A realization of quantum algebras - some applications

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1997 J. Phys. A: Math. Gen. 301259
(http://iopscience.iop.org/0305-4470/30/4/026)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.112
The article was downloaded on 02/06/2010 at 06:12

Please note that terms and conditions apply.

A realization of quantum algebras-some applications

M K Patra \dagger
Department of Physics, Sri Venkateswara College, University of Delhi, Dhaula Kuan, New Delhi110021, India

Received 8 October 1996

Abstract

Some applications of a new realization of quantum algebras are given. Finitedimensional $U_{q} s l(n)$ modules are constructed in a new basis with explicit matrix elements. For q a root of 1 the structure of Weyl modules for $U_{q} s l(3)$ is analysed in detail. As a corollary, a partial result on tensor product structure is obtained. Generalizations to other quantum algebras are briefly discussed. Realizations of $U_{q} s l(n)$ in terms of difference operators and some unusual representations are also presented.

A new realization of q-deformed enveloping algebras in a quotient algebra was reported recently [1]. Some elementary applications in the case of $U_{q} s l(2)$ yielded various representations. A new class of infinite-dimensional representations was also constructed. In this paper, these techniques are extended to more complicated cases. Naturally, one needs more sophisticated tools for such an analysis. The tensor product structure, i.e. the coproduct in the quantum algebras is exploited for this purpose.

Section 1 reviews the realization of $U_{q} s l(n+1)$ in a quotient algebra Q. Simultaneously, one obtains a realization of $\operatorname{Usl}(n+1)$ in Q. Section 2 deals with finite-dimensional representations. Constructions on our new basis are given along with some explicit formulae. In particular, the representations corresponding to fundamental weights are discussed. The non-generic case is covered in section 3 with detailed results in the case of $U_{q} \operatorname{sl}(3)\left(\simeq U_{q} s u(3)\right)$. A different proof is given of a theorem concerning Weyl modules [2]. As a corollary one obtains partial results on the fusion structure in this case. After a discussion on the advantages of the present realization further applications of the technique are given in section 4. First, an illustration of our method in studying the structure of the tensor product of representations is given. We emphasize that the computations are simpler compared to those using boson realization and also the standard Cartan-Weyl generators. Moreover, the equations for singlar vectors are uncoupled and provide a constructive technique. The second application shows that the q-boson type realization can be obtained as a special case. Section 4 deals with some infinite-dimensional representations. Besides giving a q-derivative realization, some unusual irreducible modules are given. A physical interpretation of these modules in terms of the momentum space representation is given. We conclude this paper with a discussion on possible applications to infinite-dimensional algebras and vertex operator realizations.
\dagger E-mail address: mkp@ttdsvc.ernet.in

1. Realization

Let A be the algebra with unity generated by y_{i}, h_{i}, and c where $i \in\{1, \ldots, n\}$ with defining relations $\left[h_{i}, y_{j}\right]=-a_{j i} y_{j}$ and all other commutators zero. Here $\left(a_{i j}\right)$ is the Cartan matrix of $\operatorname{sl}(n+1)$. The following identities are easily verified:

$$
\begin{equation*}
h_{i}^{m} y_{j}^{n}=y_{j}^{n}\left(h_{i}-n a_{j i}\right)^{m} . \tag{1}
\end{equation*}
$$

It thus follows that $y_{n}^{k_{n}} \ldots y_{1}^{k_{1}} h_{n}^{m_{n}} \ldots h_{1}^{m_{1}} c^{r}$ form a basis (the PBW basis) for A. Moreover, A has no zero divisors. Let S be the multiplicatively closed set generated by $\left\{y_{i}: i=1, \ldots, n\right\}$ consisting of the y_{i} 's. Then (1) implies that S satisfies the Ore condition [3]. Thus, there is an algebra of quotients of A with respect to S i.e. a ring P and an injective map $A \longrightarrow P$ such that the image of every element of S is invertible in P and any $p \in P$ can be written as $s^{-1} a$ where $s \in S$ and $a \in A$. Here we identify A with its image in P. Let q be an indeterminate and Q be the appropriate completion of $C[q] \otimes S^{-1} A$ where $C[q]$ is the algebra of rational functions in q. Write formally $q=\exp w$ and consider the following elements in Q

$$
\begin{align*}
& E_{i}=y_{i}^{-1} \frac{\sinh (w /(n+1))\left(c+\sum \alpha_{i j} h_{j}\right)}{\sinh w} \\
& F_{i}=y_{i} \frac{\sinh (w /(n+1))\left(c+\sum \beta_{i j} h_{j}\right)}{\sinh (w)} \tag{2}
\end{align*}
$$

where

$$
\begin{align*}
\alpha_{i j} & =(j \leqslant i)=-(n+1-j) & (j>i) \\
\beta_{i j} & =j(j<i)=-(n+1-j) & (j \geqslant i) . \tag{3}
\end{align*}
$$

Put

$$
\begin{align*}
& \exp \left(\frac{w}{n+1}\left(c+\sum \alpha_{i j} h_{j}\right)\right)=u_{i} \\
& \exp \left(\frac{w}{n+1}\left(c+\sum \beta_{i j} h_{j}\right)\right)=v_{i} \tag{4}
\end{align*}
$$

It follows that

$$
u_{i} y_{k}^{m}=q^{m \sigma_{k i}} y_{k}^{m} u_{i} \quad \sigma_{k i}=\delta_{k, i+1}-\delta_{k i}
$$

and

$$
\begin{equation*}
v_{i} y_{k}^{m}=q^{m \sigma_{k, i-1}} y_{k}^{m} v_{i} \tag{5}
\end{equation*}
$$

Here we use the general relation $\operatorname{ad} h\left(y_{i}^{-1}\right)=-y_{i}^{-1}$ ad $h\left(y_{i}\right) y_{i}^{-1}$. Using these formulae one obtains

$$
\left[E_{i} F_{j}\right]=\delta_{i j} \frac{\sinh \left(w h_{i}\right)}{\sinh w}
$$

Moreover, the analogue of Serre-type relations [4] between the F_{i} 's and E_{i} 's are easily verified. Hence, we have a homomorphism from $U_{q} s l(n+1)$ into Q which yields a morphism $\operatorname{Usl}(n+1) \longrightarrow Q$ in the limit $q \rightarrow 1$. We thus have a realization of the former. It is to be noted that this is only an algebra morphism. Observe also that in (2) if one interchanges $\alpha_{i j}$ and $\beta_{i j}$, respectively, the commutation relations are unaffected. Call this the dual realization and denote it by a prime, i.e. $F_{i}^{\prime}=y_{i} \sinh \left(w /(n+1) \cdot\left(c+\sum \alpha_{i j} h_{j}\right)\right)$ etc. A useful result is the following.

Lemma 1. In Q

$$
\begin{equation*}
F_{i}^{k}=y_{i}^{k}\left[v_{i} ; q\right]_{k} \quad \text { and } \quad\left(F_{i}^{\prime}\right)^{k}=(-1)^{k} y_{i}\left[u_{i}^{-1} ; q\right]_{k} \tag{6}
\end{equation*}
$$

where $[a ; q]_{n}=\left(a-a^{-1}\right)\left(a q-a^{-1} q^{-1}\right) \ldots\left(a q^{n-1}-a q^{-n+1}\right)\left(q-q^{-1}\right)^{-n}$ for $n=1,2, \ldots$ and $[a ; q]_{n}=1$ for $n=0$, and $[n]!=[q ; q]_{n}$ is the (modified) q-shifted factorial. Set $[n]=\left(q^{n}-q^{-n}\right) /\left(q-q^{-1}\right)$.

The proof is an easy consequence of (2) and induction.
It is to be observed that instead of the generators y_{i} and h_{i} one could start with y_{i} and $g_{i}=\exp \left(w h_{i} / n+1\right)=t^{h_{i}}$. Then we consider a group G generated by y_{i}, g_{i}, t, and μ with defining relations $g_{i} y_{j}=t^{-a_{j i}} y_{j} g_{i}$. Let K be a field and $K G$ the corresponding group algebra. By identifying q^{c} with μ (and $t^{n+1}=q$) in (2) one gets a realization of $U_{q} s l(n+1)$ in a group algebra. However, we do not pursue this line of thought in this paper.

2. Representations

Any representation of the algebra A in which the y_{i} 's act as invertible operators will automatically yield a representation of $U_{q} s l(n+1)$. We assume throughout this section that q is not a root of unity. Consider an A-module N generated by $S \cdot v$, such that $h_{i} v=\lambda\left(h_{i}\right) v$, where $\lambda \in H^{*}$, the dual of H generated by the h_{i} 's. We are primarily interested in the highest weight modules. Thus if v is a highest weight vector it must be annihilated by N_{+}, the subalgebra generated by E_{i} 's. This imposes a condition on the highest weight λ. In fact, by this direct method the $U_{q} s l(n+1)$ modules constructed have highest weights $k \lambda_{1}$ or $k \lambda_{n}$ with λ_{i}, the i th fundamental weight and k an arbitrary complex number. However, by repeated tensoring one can obtain modules with arbitrary weights. The advantage is a very simple basis and easy computations. Consider first the finite-dimensional representations in the generic case. It is easily seen that the requirement of finite dimensionality implies k must be a non-negative integer.

Let v a be weight vector with weight $k \lambda_{1}$, i.e. $h \cdot v=k \lambda_{1}(h) \cdot v$. Let the extended Q-module $M=\left\{y_{n}^{k_{n}} \ldots y_{1}^{k_{1}} \cdot v \mid k_{i} \in Z\right\}$. Let the generators of $U_{q} s l(n+1)$ be given by the realization (2) such that the central element c act as the scalar $-k$. Thus one has $E_{i} \cdot v=0$, $i=1 \ldots n$. Moreover, using formula (2) it follows that

$$
\begin{align*}
& E_{i} y_{n}^{k_{n}} \ldots y_{1}^{k_{1}} \cdot v=\left[k_{i+1}-k_{i}\right] y_{n}^{k_{n}} \ldots y_{i}^{k_{i}-1} \ldots y_{1}^{k_{1}} \cdot v \\
& F_{i} y_{n}^{k_{n}} \ldots y_{1}^{k_{1}} \cdot v=\left[k_{i}-k_{i-1}-k \delta_{i 1}\right] y_{n}^{k_{n}} \ldots y_{i}^{k_{i}} \ldots y_{1}^{k_{1}} \cdot v . \tag{7}
\end{align*}
$$

Similarly for the dual module corresponding to the highest weight $k \lambda_{n}$ one has $c=k$ and

$$
\begin{align*}
E_{i}^{\prime} y_{n}^{k_{n}} \ldots y_{1}^{k_{1}} \cdot v & =\left[k_{i}-k_{i-1}\right] y_{n} \ldots y_{i}^{k_{i+1}} \ldots y_{1}^{k_{1}} \cdot v^{\prime} \\
F_{i}^{\prime} y_{n}^{k_{n}} \ldots y_{1}^{k_{1}} \cdot v & =\left[k_{i+1}-k_{i}+k \delta_{i n}\right] y_{n}^{k_{n}} \ldots y_{i}^{k_{i+1}} \ldots y_{1}^{k_{1}} \cdot v . \tag{8}
\end{align*}
$$

The above formulae enable one to read off the singular vectors, i.e. all $u \in M$ s.t. $E_{i} u=0$ (or $F_{i} u=0$) for $i=1, \ldots, n$. Thus, in the case of $k \lambda_{1}$, the only E-singular vector is v and the F-singular vector is $y_{n}^{k} \ldots y_{1}^{k} \cdot v$. Therefore, the subspace V of M spanned by $y_{n}^{k_{n}} \ldots y_{1}^{k_{1}} \cdot v$, with $0 \leqslant k_{n} \leqslant \cdots \leqslant k_{1} \leqslant k$, is in fact an $U_{q} s l(n+1)$ submodule. Since it is finite-dimensional with an essentially unique E-singular vector it is irreducible. Similarly, $V\left(k \lambda_{n}\right)$ is spanned by $y_{n}^{k_{n}} \ldots y_{1}^{k_{1}} \cdot v$ with $k \geqslant k_{n} \geqslant \cdots \geqslant k_{1} \geqslant 0$. The formulae (7) provide the matrix elements. Moreover, we have a natural pairing corresponding to the transpositions $i \leftrightarrow n+1-i$. It may be noted that with some modification the above bases correspond to the crystal bases of Kashiwara [5] for the modules concerned.

Next we consider modules corresponding to other fundamental weights. As mentioned earlier these can be constructed by appropriate tensor products. One has to use the coproduct structure in $U_{q} s l(n+1)$. There is a coproduct in Q. The relation between these two coproducts, if any, should be interesting. But we use only the well known coproduct in $U_{q} s l(n+1)$. These are given by, setting $K_{i}=q^{h_{i}}$,

$$
\begin{align*}
& \triangle(h)=h \otimes 1+1 \otimes h \quad h \in H \tag{9}\\
& \Delta\left(E_{i}\right)=E_{i} \otimes 1+K_{i} \otimes E_{i} \tag{10}
\end{align*}
$$

and

$$
\begin{equation*}
\Delta\left(F_{i}\right)=F_{i} \otimes K_{i}+1 \otimes F_{i} \tag{11}
\end{equation*}
$$

These formulae define the action of the generators on $M \otimes N$ where M and N are $U_{q} s l(n+1)$ modules. This is further extended to an arbitrary but finite number of tensor products.

Now, consider the module $V=V\left(\lambda_{1}\right)$ (i.e. the regular representation). Let $E=$ $\sum_{k=0}^{n} \bigwedge^{k}(V)$ denote the sum of the k th exterior powers of V. As in the case of $\operatorname{sl}(n+1)$ the ' k-vectors', $v \wedge y_{1} v \wedge \cdots \wedge y_{k-1} \ldots y_{1} v$ generate the module $V\left(\lambda_{k}\right)$. In fact, the explicit formulae can be written down with ease. Thus, let $v_{(i)}=y_{i-1} \ldots y_{1} v$. The k-vectors $v_{\left(i_{1}\right)} \wedge \cdots \wedge v_{\left(i_{k}\right)}, i_{1}<\cdots<i_{k}$, span $V\left(\lambda_{k}\right)$. One sees easily that the matrix elements in this basis are identical to those in the ordinary case $(q \rightarrow 1)$. From the modules $V\left(\lambda_{i}\right)$ one constructs $V\left(k_{i} \lambda_{i}\right)$ by taking symmetric powers and then computes the matrix elements for any $V(\lambda)$. The calculations are simple but tedious. The details are given only for $U_{q} s l(3)$ below. It may be noted that various aspects of this case have been investigated by other methods [6]. However, the present method besides covering these aspects extends to the difficult case when q is a root of 1 .

The algebra $U_{q} s l(3)$ is special in the $s l(n+1)$ series. The only two fundamental modules are the regular representation and its dual. Therefore, from the construction above any module $V(\lambda)$ with $\lambda=k_{1} \lambda_{1}+k_{2} \lambda_{2}, k_{1}, k_{2} \geqslant 0$, is easily constructed. For this we have to use the coalgebra structure in $U_{q} s l(3)$. The following lemma is well known [6].

Lemma 2.

$$
\begin{align*}
& \Delta\left(E_{i}^{n}\right)=\left(\Delta\left(E_{i}\right)\right)^{n}=\sum_{0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right] q^{n(n-k)} E_{i}^{k} K_{i}^{n-k} \otimes E_{i}^{n-k} \\
& \Delta\left(F_{i}\right)^{n}=\sum\left[\begin{array}{l}
n \\
k
\end{array}\right] q^{n(n-k)} F_{i}^{k} \otimes F_{i}^{n-k} K_{i}^{-k} \tag{12}
\end{align*}
$$

where

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{[n]!}{[k]![n-k]!} .
$$

This is an analogue of the binomial theorem for q-commuting variables and easily proved by induction.

Let $V\left(j \lambda_{1}\right)$ be the $U_{q} s l(3)$-module with generators by E_{i} and $F_{i}, i=1,2$. The action of these generators is given by (7). Similarly, $V\left(k \lambda_{2}\right)$ is defined via the action of E_{i}^{\prime} and F_{i}^{\prime}. If x and z are the respective highest weight vectors then bases for $V\left(j \lambda_{1}\right)$ and $V\left(k \lambda_{2}\right)$ are given by $y_{1}^{m_{1}} y_{2}^{m_{2}} \cdot x$ and $y_{1}^{n_{1}} y_{2}^{n_{2}} \cdot z$, with $m_{1} \geqslant m_{2}$ and $n_{2} \geqslant n_{1}$. Let $\lambda=j \lambda_{1}+k \lambda_{2}$ and $W=V\left(j \lambda_{1}\right)+V\left(k \lambda_{2}\right)$. The latter is reducible but one finds the indecomposable components, for example the irreducible submodule $V(\lambda)$ generated by $x \otimes z$. For q generic, W is completely reducible and $V(\lambda)$ is irreducible [7]. In general, neither of these statements is true in the non-generic case (q is a root of 1). In any case, the

Weyl modules $V(\lambda)$ are of fundamental importnace. Let $v=x \otimes z$ be the highest weight singular vector that generates $V(\lambda)$. The usual basis for $V(\lambda)$ is $F_{3}^{m_{3}} F_{2}^{m_{2}} F_{1}^{m_{1}} \cdot v$, where $F_{3}=F_{1} F_{2}-q^{-1} F_{2} F_{1}$. Consider now the relation between the two bases discussed here.

Lemma 3. The following identity holds in $U_{q} s l(3)$:

$$
F_{2}^{n} F_{3}^{m}(x \otimes z)=q^{-j r} \sum_{r}\left[\begin{array}{c}
m \tag{13}\\
r
\end{array}\right] q^{m(m-r)} F_{3}^{r} \cdot x \otimes F_{2}^{n} F_{3}^{m-r} \cdot z
$$

Proof. \quad Note that $\Delta\left(F_{3}\right)=F_{3} \otimes q^{-h_{3}}+1 \otimes F_{3}+\left(q-q^{-1}\right) F_{2} \otimes q^{-h_{2}} F_{1}$. Since $F_{2} \cdot x=F_{1} \cdot z=0$ and $\Delta(f) \cdot(x \otimes z)=F_{3} \cdot x \otimes q_{-h^{3}} \cdot z+1 \otimes F_{3} \cdot z$ the above identity follows from the q-binomial theorem and the fact that $F_{2} F_{3}=q^{-1} F_{3} F_{2}$.

Theorem 1. Let x and z be the highest weight vectors in $V\left(j \lambda_{1}\right)$ and $V\left(k \lambda_{2}\right)$, respectively. The actions of the generators of $U_{q} s l(3)$ on the respective modules are given by (7) and (8) (for $n=2$). Then

$$
\begin{gather*}
F_{1}^{c} F_{2}^{b} F_{3}^{a}(x \otimes z)=\sum_{r, s} \alpha q^{t}\left[\begin{array}{l}
a \\
r
\end{array}\right]\left[\begin{array}{l}
c \\
s
\end{array}\right]\left[q^{-j+r} ; q\right]_{s}\left[q^{b} ; q^{-1}\right]_{c-s}\left[q^{k-a+r} ; q\right]_{c-s}\left[q^{k-a+r} ; q^{-1}\right]_{b} \\
\times\left[q^{k} ; q^{-1}\right]_{a-r} y_{1}^{r+s} y_{2}^{r} \cdot x \otimes y_{1}^{a+c-r-s} y_{2}^{a+b-r} \cdot z \tag{14}
\end{gather*}
$$

where

$$
t=-(k+1) r+(a-r-b) s+(a-r) r+(c-s) s
$$

and

$$
\alpha=\left(q-q^{-1}\right)^{a+b+c}
$$

This result follows from the preceding lemma and the formulae (7) and (12).
Next consider the question of reducibility. A Verma module is by definition generated by a singular vector with highest weight that is annihilated by $E_{i}(i=1,2)$. Verma modules are indecomposable. The Weyl modules $V(\lambda)$ are quotients of Verma modules. Both in the cases of ordinary Lie algebras and their q-analogues when q is not a root unity $V(\lambda)$ is irreducible. To prove irreducibility in the case of $V(\lambda)$ which is finite-dimensional it is necessary and sufficient that there be no singular vector other than the highest weight vector. Thus it is essential to find the singular vectors [8] in any finite-dimensional module. In this direction we have:

Lemma 4. In the $U_{q} s l(3)$-module, $V\left(j \lambda_{1}\right) \otimes V\left(k \lambda_{2}\right)$, any singular vector is of the form $\sum_{m, n} C_{m n} y_{2}^{m} y_{1}^{n} \cdot x \otimes y_{2}^{M-m} y_{1}^{N-n} \cdot z$ where $C_{m n}$ satisfy the recursion relations:

$$
\begin{align*}
C_{m, n+1} & =\frac{q^{N-n}-q^{-N+n}}{q^{n-m+1}-q^{-n+m-1}} q^{j+m-2 n} C_{m n} \tag{15}\\
C_{m+1, n} & =-\frac{q^{M-N+n-m}-q^{-(M-N+n-m)}}{q^{m+1}-q^{-m-1}} q^{n-2 m} C_{m n} . \tag{16}
\end{align*}
$$

First, one notes that any singular vector must belong to some weight space of the Abelian subalgebra generated by h_{i} 's. Thus it must have the form given above. The recursion relations follow from direct computation.

Next note that if q is the p th root of unity then the module $V\left(j \lambda_{1}\right)$ is reducible for $j \geqslant p / 2, p$ for even and odd p, respectively. For definiteness we consider only the restricted modules in the non-generic case, i.e. $j, k<p ; p$ odd. We can deal with the case of even p and non-restricted modules with a little more effort.

Theorem 2. Suppose q is generic or $j, k<p$ if q is a p th root of unity, p odd. Then any singular vector v in $V\left(j \lambda_{1}\right) \otimes V\left(k \lambda_{2}\right)$ is given by the formula (up to a scalar multiple)

$$
\begin{align*}
& v=\sum_{m, n} C_{m n} y_{2}^{m} y_{1}^{n} x \otimes y_{2}^{N-m} y_{1}^{N-n} z \\
& C_{m n}=\frac{[N]!}{[N-n]![m]![n-m]!} q^{n(j+1-n)+m(n+1-m)} \quad N \leqslant \min (j, k) \tag{17}
\end{align*}
$$

Proof. Equation (15) implies that the minimum value of n is m and the maximum N. Thus $\max (m)=n$ and then (16) implies $M=N$. Furthermore, $\min (m)=0$. Since, $0 \leqslant m \leqslant n \leqslant j$ and $N-n \leqslant N-m \leqslant k$ we get $N \leqslant \min (j, k)$. The coefficients $C_{m n}$ are then easily computed from the recursion relations (15) and (16).

We note the simple form of the singular vectors in our basis. The theorem implies that the singular vectors belong to the subspaces with weights $\lambda=j \lambda_{1}+k \lambda_{2},(j-1) \lambda_{1}+$ $(k-1) \lambda_{2}, \ldots,(k-j) \lambda_{1}$ assuming $j \leqslant k$. Now consider the submodule $V(\lambda)$ generated by $x \otimes z$, with highest weight $j \lambda_{1}+k \lambda_{2}$. For generic q this is the only singular vector in this submodule. One can infer this from the general theory of representations of quantum algebra which is parallel to the ordinary case $(q=1)$. However, we can prove this directly by showing that the singular vectors in (17) cannot belong to the submodule spanned by the vectors $F_{1}^{c} F_{2}^{b} F_{3}^{a}(x \otimes z)$. The second course becomes imperative in case q is a root of unity since the classical theorems such as the Weyl reducibility theorem and tensor product decomposition theorems are not true. We mention in passing that one faces a similar situation in the case of classical Lie algebras over a field of prime characteristics (modular Lie algebras) [9]. The method given in the following section for quantum algebras can easily be adapted to modular Lie algebras.

3. Root of 1 case

Throughout this section it is assumed that q is a p th root of unity, p odd. As mentioned earlier, extension to the even case is straightforward with minor changes. Now let v be a singular vector in $V\left(j \lambda_{1}\right) \otimes V\left(k \lambda_{2}\right)$ given by the formula (17). Comparing (14) and (17) one proves the following.

Lemma 5. If a singular vector $v \in V(\lambda)$ then it has the form

$$
\begin{equation*}
v=\sum_{i} d_{i} F_{1}^{i} F_{2}^{i} F_{3}^{N-i}(x \otimes z) \quad 0<N<\min (j, k) \tag{18}
\end{equation*}
$$

Here the coefficients d_{i} are to be determined. Translating into our basis we obtain
$\sum_{m, n} C_{m n} y_{2}^{m} y_{1}^{n} x \otimes y_{2}^{N-m} y_{1}^{N-n} z=\sum_{i, r, s} d_{i} F_{i}(r, s) \alpha_{i} q^{a_{i}}\left(y_{1}^{r+s} y_{2}^{r} x \otimes y_{1}^{N-r-s} y_{2}^{N-r} z\right)$
$F_{i}(r, s)=\frac{(-1)^{r+s}([i]!)^{2}[N-i]![j]![k]!}{[s]![i-s]![r]![N-i-r]![s]![k+r-N]![j-r-s]!}$
$a_{i}=-(k+1) r+(N-i-(r+s)) s+(N-(i+r)) r, \alpha_{i}=\left(q-q^{-1}\right)^{i-N}$.
Now, putting $r=m$ and $r+s=n$ in (19) one obtains a set of equations

$$
\begin{equation*}
C_{m n}=\sum_{l=0}^{N-n} d_{n-m+l} \alpha_{n-m+l} q^{a_{n-m+l}} f_{n-m+l}(m, n-m) \tag{21}
\end{equation*}
$$

Any singular vector v given by (18) must satisfy these $(N+1)(N+2) / 2$ equations. Thus our task is to determine the conditions under which (21) has solutions and to calculate the coefficients d_{i}. Assuming (21) is satisfied we can calculate the coefficients d_{i} :

$$
\begin{align*}
& C_{N N}=(-1)^{N} d_{0} q^{-(k+1) N} \frac{[j]!}{[j-N]!} \tag{22}\\
& C_{N-1, N}=(-1)^{N} d_{1} q^{-(k+1)(N-1)-1} \frac{[j]![k]!}{[j-1]![k-N]!} \tag{23}\\
& C_{N-i, N}=(-1)^{N} d_{i} q^{-(k+1)(N-i)-i^{2}} \frac{[j]![k]!}{[k-i]![j-N]!} . \tag{24}
\end{align*}
$$

Furthermore, from (21) we get

$$
\begin{align*}
C_{N-1, N-1}= & (-1)^{N-1} q^{-k(N-1)} \frac{[N]![j]![k]!}{[N-1]![k-1]![j-N+1]!} d_{0} \\
& +q^{-(k+1) N-1} \frac{[j]![k]!}{[k-1]![j-N+!]!} d_{1} \tag{25}
\end{align*}
$$

Using the preceding formulae this reduces to
$\frac{C_{N-1, N-1}}{C_{N-1, N}}=-\frac{[N]![j-N]![k]!}{[N-1]![j-N+1]![k-1]!} \frac{C_{N N}}{C_{N-1, N}}-\frac{q[j-N]!}{[j-N+1]!}$.
Now using (15) and (16) the above simplifies to

$$
\begin{equation*}
q^{-(j-N+1)}=-\frac{[j-N]!}{[j-N+1]!}\left(\frac{[k]!}{[k-1]!} q^{k+2}+q\right) \tag{27}
\end{equation*}
$$

If q is not a root of unity (27) can be satisfied if and only if $j+k=N-2$ which is impossible since $N<\min (j, k)$. Therefore, we have a direct proof of irreducibility of $V(\lambda)$ in the generic case. If q is a p th root of unity (p odd) then (27) is satisfied iff

$$
\begin{equation*}
j+k=p+N-2 \tag{28}
\end{equation*}
$$

Now we can prove the main theorem.

Theorem 3. Let $V\left(\lambda=j \lambda_{1}+k \lambda_{2}\right)$ be the Weyl module generated for $U_{q} s l(3)$ by a highest weight singular vector v. If q is generic $V(\lambda)$ is irreducible. If q is a p th (p odd) root of 1 then the following statements are true: (i) $V(\lambda)$ is irreducible when either $j+k<p-1$ or $j=p-1$ or $k=p-1$; (ii) if $j+k=p+N-2, N>0, j, k<p-1$ then $V(\lambda)$ is reducible. The irreducible submodule $V\left(\lambda^{\prime}\right)$ of $V(\lambda)$ is of highest weight $\lambda^{\prime}=(j-N) \lambda_{1}+(k-N) \lambda_{2}$. The corresponding singular vector v^{\prime} is given by the following formula:

$$
\begin{align*}
v^{\prime} & =\sum_{i=0}^{N} d_{i} F_{1}^{i} F_{2}^{i} F_{3}^{N-i} \cdot v \tag{29}\\
d_{i} & =\frac{[k-i]!}{[N-i]![i]!} q^{j i} \tag{30}
\end{align*}
$$

The quotient module $V(\lambda) / V\left(\lambda^{\prime}\right)$ is irreducible and its dimension is equal to the difference of dimensions of the corresponding modules given by the Weyl dimension formula for simple Lie algebras over \mathbb{C}.

Proof. The first assertion has already been proved except for the case j or $k=p-1$. However, this is easy to see since (28) is satisfied for $N=j+1$ (assuming $k=p-1$) and by theorem 2 all singular vectors satisfy $N<\min (j, k)$. To prove (ii) note first that the Weyl module $V(\lambda)$ is by definition obtained from the corresponding irreducible module by appropriate specialization in $\mathbb{C}[q]$ [7]. One can carry out these steps because of the existence of a ' Z-basis' in $U_{q} L$ for any simple Lie algebra L. Explicitly, let ϵ be root of unity and let K be the image of the homomorphism $\mathbb{C}[q] \longrightarrow \mathbb{C}[\epsilon]$ sending $q \rightarrow \epsilon$. Let $V_{\epsilon}(\lambda)=V(\lambda) \bigotimes_{K} \mathbb{C}$ where $V(\lambda)$ is the highest weight $U_{q} L$ module when q is a formal variable. Then $V_{\epsilon}(\lambda)$ is the Weyl module corresponding to λ. We drop the formal notation and treat q as a root of unity and note that the Weyl module is isomorphic to the tensor product modules considered above. Hence, to show that v^{\prime} given by (29) is a singular vector it suffices to show that d_{i} satisfy the equations (21). Note that if d_{i} satisfy (21) then they are determined uniquely up to a constant (24). In fact, (29) follows (24) and (17). Substituting the values of d_{i} in (21) and simplifying we have to prove the following identity

$$
\begin{equation*}
\frac{q^{n(j+1-N)+m(k+2)}}{[N-n]!}=\alpha(-)^{n} \sum_{r=0}^{N-n} \frac{q^{(j-n)(r+n-m)}[k-s-r]![s+r]!}{[r]![N-n-r]![k+m-N]![s]![j-n]!} \tag{31}
\end{equation*}
$$

where $s=n-m$ and α is a constant independent of n and m. For proving (31) we require the following.

Lemma 6. Let q be a p th root of unity and suppose it is given that $A, B \in Z_{+}$be such that $A, B \leqslant p-1$ and $A+B=p+t$, then for $h \leqslant t$

$$
\begin{equation*}
\sum_{k=0}^{h} \frac{[A]![B]!}{[k]![A-k]![h-k]![B-h+k]!} q^{-A h+t k}=\frac{[t]!}{[t-h]![h]!} \tag{32}
\end{equation*}
$$

Formula (32) is simply an adaptation of a well known relation among Gaussian binomial coefficients [10] to our notation. On the right-hand side, t instead of $A+B$ appears due to the fact that q is a root of unity. Furthermore, defining for any integer $i \leqslant p-1$, $i^{\prime}=p-1-i$ we have

$$
\begin{equation*}
[i]!=(-1)^{i} \frac{p}{\left[i^{\prime}\right]!} \tag{33}
\end{equation*}
$$

Then apart from an irrelevant factor the right-hand side of (31) is equal to

$$
\frac{q^{(j-n)(n-m)}}{[j-n]!} \cdot \sum_{r=0}^{N-n} \frac{[s]![j-m+1]!}{[s-r]![r]![j-N+s+r+1]![N-n-r]!} q^{r(j-n)}
$$

Now using the lemma and the fact that $s=n-m$ it is easily seen that apart from a factor independent of m and n the last expression is equal to the left-hand side of (31). The theorem is proved.

It may be observed that with a little more effort the general non-restricted case, i.e. allowing $k \geqslant p$ may be treated by this method. In the case of even p replace p by $p / 2$ everywhere in the theorem above. Note also that the case of ordinary Lie algebras over a field of characteristic p has a parallel representation theory. In fact, a part of the theorem has been proved for arbitrary $U_{q} L$ by different methods [2]. However, the present method yields more viz an explicit construction of singular vectors in terms of two bases-the standard one and a polynomial basis given here. Furthermore, an analysis parallel to the one above would also yield the F_{i}-singular vectors (i.e. those annihilated by F_{i}) which can
also be derived by using an appropriate involution operater on e-singular vectors. Using these one can build a picture of indecomposable $U_{q} s l(3)$ modules. Besides, theorem 3 along with the results preceding it can be used to obtain a tensor product theorem for modules of type $V\left(j \lambda_{1}\right)$ and $V\left(k \lambda_{2}\right)$. Thus we have the following.

Corollary 1. Using the notation of the theorem and $\delta=\alpha_{1}+\alpha_{2}$ where α_{1} and α_{2} form the root basis of $\operatorname{sl}(3)$ and $j \leqslant k<p-1$

$$
\begin{aligned}
& V(j \lambda) \otimes V(k \lambda)=W_{1} \oplus W_{2} \\
& W_{1}=V(\lambda) \oplus V(\lambda-\delta) \oplus \cdots \oplus V\left(\lambda-N^{\prime} \delta\right)
\end{aligned}
$$

$N^{\prime}=(N-1) / 2,(N-2) / 2$ for odd and even N, respectively, and

$$
W_{2}=V(\lambda-(N+1) \delta) \oplus V(\lambda-(N+2) \delta) \oplus \cdots \oplus V(\lambda-j \delta) \oplus X
$$

where $X=0$ for N odd and $X=V(\lambda-(N / 2) \delta)$ for even $N . W_{1}$ is completely reducible and W_{2} is a direct sum of indecomposable modules described in the theorem.

There are some papers [11] which use established techniques (Gelfand-Tsetlin construction, q-boson realization etc) and partially overlap the matters discussed here. Therefore, it seems appropriate to make some comparisons of the present techniques with the standard techniques. First, this is a realization in the semidirect product of two power series algebras. The computations are easier. Second, the calculation of singular vectors is more managable because the recursion relations such as (15) and (16) are uncoupled in contrast to the direct methods using the Cartan-Weyl basis where a consistency requirement is imposed. We illustrate this fact later. From the singular vectors others vectors can be constructed using, for example, formulae such as (14). Moreover, the explicit construction of a basis can be generalized to higher algebras. Thus the present realization can be used as a supplement to the Gelfand-Tsetlin technique and one would expect that the combination of the two would yield rich dividends. Finally, we can embed other quantum algebras in an appropriate quotient algebra. Examples of A_{n}, and C_{n} are given later.

4. Further generalizations

First consider the singular vectors in the module $V\left(k_{1} \lambda_{1}\right) \otimes V\left(k_{2} \lambda_{2}\right) \otimes V\left(j \lambda_{1}\right)$. A typical homogeneous element is of the form

$$
\sum C_{m_{1} m_{2} n_{1} n_{2}}\left(y_{1}^{m_{1}} y_{2}^{m_{2}} u \otimes y_{1}^{n_{1}} y_{2}^{n_{2}} v \otimes y_{1}^{N_{1}-m_{1}-n_{1}} y_{2}^{N_{2}-m_{2}-n_{2}}\right) w
$$

where u, v, and w are the respective primitive generators and N_{1}, N_{2} are fixed. This is a singular vector if and only if the coefficients satisfy the following set of relations:

$$
\begin{aligned}
& {\left[m_{2}-m_{1}-1\right] C_{m_{1}+1 m_{2} n_{1} n_{2}}+q^{\lambda_{1}-2 m_{1}+m_{2}}\left[n_{1}+1\right] C_{m_{1} m_{2} n_{1}+1 n_{2}}} \\
& \quad=-q^{\lambda_{1}-2 m 1+m_{2}-2 n_{1}+n_{2}}\left[N_{2}-m_{2}-n_{2}-N_{1}+m_{1}+n_{1}\right] C_{m_{1} m_{2} n_{1} n_{2}}
\end{aligned}
$$

and

$$
\begin{gathered}
-\left[m_{2}+1\right] C_{m_{1} m_{2}+1 n_{1} n_{2}}+q^{-2 m_{2}+m_{1}}\left[n_{2}-n_{1}+1\right] C_{m_{1} m_{2} n_{1} n_{2}+1} \\
=q^{\lambda_{2}-2 m_{2}+m_{1}-2 n_{2}+n_{1}}\left[N_{2}-m_{2}-n_{2}\right] C_{m_{1} m_{2} n_{1} n_{2}} .
\end{gathered}
$$

From the structure of the modules we know that $m_{2} \leqslant m_{1} \leqslant k_{1}$ and $n_{1} \leqslant n_{2} \leqslant k_{2}$. Thus the minimum value for m_{1} is m_{2} and for n_{2} it is n_{1}. We can also deduce that for fixed $m_{2}, n_{2} \max \left(m_{1}\right)=N_{1}-N_{2}+m_{2}$ and for fixed $m_{1}, n_{1} \max \left(n_{2}\right)=N_{2}-m_{1}$. Moreover, $\left(N_{1}-N_{2}\right) \geqslant\left(m_{1}-m_{2}\right)-\left(n_{1}-n_{2}\right)$. In particular, $N_{1} \geqslant N_{2}$. Note that the two sets of
equations are not coupled in contrast to the standard technique with the Cartan-Weyl basis. We also have $\min \left(m_{1}+n_{1}\right)=N_{1}-j$ and $\min \left(m_{2}+n_{2}\right)=N_{2}-j$. Next note that for the coefficient of the form $C_{r+k r s s}$ the first equation reduces to

$$
C_{r+k+1 r s s}=-q^{\lambda_{1}-r-s-2 k} \frac{\left[N_{1}-N_{2}-2 r-k+2 s\right]}{[k+1]} C_{r+k r s s} .
$$

Thus

$$
\begin{equation*}
C_{r+k r s s}=(-1)^{k} q^{\left(\lambda_{1}-r-s-k\right)(k-1)}\left[N_{1}-N_{2}-2 r-2 s ; q\right]([k]!)^{-1} C_{r r s s} \tag{34}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
C_{r r s s+k}=q^{\left(\lambda_{2}-s-k\right)(k-1)}([k]!)^{-1}\left[n_{2}-2 s ; q^{-1}\right] C_{r r s s} . \tag{35}
\end{equation*}
$$

It is seen that $C_{0011}, C_{0022}, \ldots, C_{00 N_{2} N_{2}}$ already determine the rest of $C_{r r s s}$. Moreover, one shows easily that $0 \leqslant N_{1}-N_{2} \leqslant j$ and letting $N_{1}-N_{2}=r$ we have $r \leqslant N_{1} \leqslant j+k_{1}-r$ and $0 \leqslant N_{2} \leqslant k_{2}+r$. The last two follow because the highest weight must be dominant. Since the coefficients $C_{00 k k}, k \leqslant N_{2}$, can be chosen independently the number of times a particular module corresponding to a fixed $\left(N_{1}, N_{2}\right)$ appears in the product $V\left(k_{1} \lambda_{1}\right) \otimes V_{\left(k_{2} \lambda_{2}\right)} \otimes_{V}\left(j \lambda_{1}\right)$ is equal to $\min \left(N_{2}+1, N_{1}+1\right)$. The coefficients $C_{m_{1} m_{2} n_{1} n_{2}}$ can be computed from the above relations. These yield all singular vectors when q is the root of 1 . But of course, in the latter case there is a lot of collapsing as we have seen in theorem 3. Again the method used in proving the product structure may be applied in this case. However, the computations are involved and it seems likely that some summation formula involving basic hypergeometric series will come in to play again (the simplest such formula is the q-Chu-Vandermonde formula for the series used in theorem 3).

Next using the coproduct structure we give a realization in the case of $U_{q} s l(n)$ which yields a polynomial basis for all finite-dimensional modules. Let $B=\bigoplus_{1}^{n} A^{(i)}$ be the direct sum of m copies of A defined in section 2 . Write $x^{(i)}$ for an element in $A^{(i)}$ and consider the following realization

$$
\begin{equation*}
E_{i}=\sum_{j=1}^{m} \prod_{r=1}^{j-1} K_{i}^{(r)} y_{i}^{(j)}\left(w_{i}^{(j)}-\left(w_{i}^{(j)}\right)^{-1}\right) \tag{36}
\end{equation*}
$$

where $w_{i}^{(j)}$ is either u_{i} or v_{i}. This can yield all finite-dimensional representations on factor rings of appropriate polynomial rings.

We end this section with formulae giving a related realization of quantum algebras corresponding to classical Lie algebras A_{n} and C_{n}. Note that if we put

$$
N_{i}=\sum_{j} \alpha_{i-1 j} h_{j}=\sum \beta_{i j} h_{j}
$$

then $F_{i}=y_{i}\left[N_{i+1}\right], E_{i}=y_{i}^{-1}\left[N_{i}\right]$, and $K_{i}=q^{N_{i+1}-N_{i}}$ for $1 \leqslant i \leqslant n$ gives a realization of $U_{q} s l(n)$. We could start with generators y_{i}, N_{i} and defining relations

$$
\begin{equation*}
\left[N_{i} y_{k}\right]=\left(\delta_{i k}-\delta_{i k-1}\right) y_{k} . \tag{37}
\end{equation*}
$$

Note that we have $(n+1)$ generators N_{i}. Let $z_{i}, i=1, \ldots, n$, be defined such that

$$
\begin{equation*}
\left[N_{i} z_{j}\right]=\delta_{i j} z_{j} \tag{38}
\end{equation*}
$$

Then setting

$$
\begin{equation*}
y_{i}=z_{i} z_{i+1}^{-1} \tag{39}
\end{equation*}
$$

we obtain a realization of (37). Now using these new generators we can get realizations of the quantum algebras of respective classical algebras as follows.

$$
\begin{align*}
& U_{q} A_{n} \\
& \\
& F_{i} \\
& E_{i}=z_{i} z_{i+1}^{-1}\left[N_{i+1}\right] \tag{40}\\
& K_{i+1} z_{i}^{-1}\left[N_{i}\right] \\
& U_{q} C_{n} \\
& \\
& F_{i}=z_{i} z_{i+1}^{-1}\left[N_{i}\right. \\
& E_{i}=z_{i+1} z_{i}^{-1}\left[N_{i}\right] \\
& K_{i}=q^{\left(N_{i+1}-N_{i}\right)} \quad i=1, \ldots, n-1 \\
& F_{n}=z_{n}^{2} \tag{41}\\
& E_{n}=-z_{n}^{-2}\left[\begin{array}{c}
N_{n} \\
2
\end{array}\right] \\
& K_{n}=-\left[2 N_{n}+1\right] .
\end{align*}
$$

We note that, unlike the undeformed case, $B_{q}(n)$ and $D_{q}(n)$ have realization only in Fermionic generators [12]. Therefore, although we can obtain realization of B_{n} and D_{n} in our generators it is not possible to extend this directly to the deformed case, the reason being that in the latter case the coproduct is not cocommutative.

5. Operator realizations

In this section we construct some infinite-dimensional representations. First, we have a realization of the algebra A in terms of differential operators. See [13] for a similar construction for $U_{q} s l(2)$. Let $B=\mathbb{C}\left[z_{i}, z_{i}^{-1} ; i=1, \ldots, n\right]$ be the algebra of Laurent polynominals in z, treated here as a formal power series. Let D denote the derivation $z\left(\partial / \partial z_{i}\right)$ and set $D_{i}=0$ if $i=0$ or $n+1$. Let

$$
\begin{equation*}
h_{i}=D_{i-1}-2 D_{i}+D_{i+1} \tag{42}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{i}=z_{i} \tag{43}
\end{equation*}
$$

Then $\left[h_{i} y_{j}\right]=-\alpha_{j i} y_{i}$. Therefore, using (2) we obtain the realization (putting $c=0$):

$$
\begin{align*}
E_{i} & =z_{i}^{-1} \frac{q^{D_{i+1}-D_{i}}-q^{D_{i}-D_{i+1}}}{q-q^{-1}} \\
F_{i} & =z_{i} \frac{q^{D_{i}-D_{i-1}}-q^{D_{i-1}-D_{i}}}{q-q^{-1}} \tag{44}
\end{align*}
$$

In terms of the shift operators $T_{i} \cdot f\left(z_{1}, \ldots, z_{i}, \ldots\right)=f\left(z_{1}, \ldots, q z_{i}, z_{i+1}, \ldots\right)$

$$
\begin{align*}
E_{i} & =z_{i}^{-1} \frac{T_{i+1} T_{i}^{-1}-T_{i} T_{i+1}^{-1}}{q-q^{-1}} \\
F_{i} & =z_{i} \frac{T_{i} T_{i-1}^{-1}-T_{i}^{-1} T_{i-1}}{q-q^{-1}} \tag{45}
\end{align*}
$$

One could also write the above in terms of partial q-derivatives but (45) is more useful. Let us briefly consider a possible method of constructing an infinite-dimensional representation. Let A be an Abelian algebra with generators $\left\{\alpha_{i}\right\}$ and suppose that A has no zero divisors. Let $B \subset \operatorname{Der}(A)$ be an Abelian subalgebra of $\operatorname{Der}(A)$, the algebra of derivations of A.

Let S be the subalgebra of A generated by simultaneous eigenvectors of B. Then, setting $h_{i}=\sum j d_{j}^{(i)}, d_{j}^{(i)} \in B$, and choosing $y_{k} \in S$ we get a set of linear equations such that $\left[h_{i} y_{j}\right]=-a_{j i} y$. Then using (2) one obtains a realizaton of $U_{q} s l(n+1)$. Note that we could slightly generalize this by putting $h=k+D, k$ constant, and choosing k appropriately. One could then calculate n-point functions for the modules [13].

Finally, let us consider an unusual representation corresponding to Whittaker modules [1,14]. Thus, let $X=\left\{f\left(z_{1}, \ldots, z_{n}\right): f\right.$ is meromorphic in each variable $\}$. The domains of definitions of $f \in X$ will be left unspecified. Let $z=\left(z_{1}, \ldots, z_{n}\right)$

$$
\begin{aligned}
& h_{i} f(z)=z_{i} f(z) \\
& y_{i} \cdot f(z)=f\left(z_{1}, \ldots, z_{i-1}-1, z_{i}+2, z_{i+1}-1, \ldots, z_{n}\right)
\end{aligned}
$$

Then, h_{i} and y_{j} satisfy the basic commutation relations. Note that h_{i} is no longer diagonal. In terms of operators

$$
\begin{aligned}
E_{i} & =q^{\left(\sum \alpha_{i j} z_{j}-1\right)}-q^{-\left(\sum \alpha_{i j} z_{j}-1\right)} \\
& =\frac{\exp \left(\partial_{i-1}-2 \partial_{i}+\partial_{i+1}\right)}{q-q^{-1}} .
\end{aligned}
$$

Still another similar non-standard realization of $U_{q} s l(n+1)$ is given by defining

$$
\begin{align*}
& h_{i} f(z)=z_{i} f(z) \\
& y_{i} f(z)=\frac{f\left(z_{1}, \ldots, z_{i-1}-1, z_{i}+2, z_{i+1}+1, \ldots, z_{n}\right)}{\left(z_{i-1}-1\right)\left(z_{i}+2\right)\left(z_{i+1}-1\right)} \tag{46}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
E_{i}=\frac{q^{\sum \alpha_{i j} z_{j}-1}-q^{-\sum \alpha_{i j} z_{j}-1}}{\left(z_{i-1}+1\right)\left(z_{i}-2\right)\left(z_{i}+2\right)\left(q-q^{-1}\right)} \exp \left(-\partial_{i-1}+2 \partial_{i}-\partial_{i+1}\right) \tag{47}
\end{equation*}
$$

Similarly for F_{i}.
We can interpret these realizations as follows. Let us start with a representation of A in coordinate space:

$$
\begin{align*}
& h_{k}=-\iota \partial_{k} \tag{48}\\
& y_{k}=\exp \iota\left(z_{k-1}-2 z_{k}+z_{k+1}\right) \tag{49}
\end{align*}
$$

The momentum space representations of these operators via Fourier transforms and their complex cojugates are precisely the representations given above.

6. Conclusion

Some concluding remarks are in order. It is to be observed that the algebra $Q=S^{-1} A$ is isomorphic to a subalgebra of the enveloping field of a Heisenberg algebra [15]. However, note that we have to find a representation of A such that the y_{i} 's are invertible to yield a representation of $s l(n+1)$ and $U_{q} s l(n+1)$. The representations are on the space of polynomials. We have already noted the relative merits and limitations of this realization. Using this one can get all the results that are computable using the Cartan-Weyl generators or the q-boson realization. Moreover, as discussed at the end of section 3 in the more complicated cases the present method demands relatively easier computations. In section 4 we have obtained some results on the fusion structures in $U_{q} s l(3)$ modules. This could be a starting point for more complete results with possible applications to quantum field theories with non-semisimple gauge symmetry [16]. Note also that the realization (2) yields a realization of $U_{q} A(\infty)$ provided we replace the n in those formulae by any constant
$(\neq-1)$. However, we can pass over to the affine algebras $s l(n)^{\wedge}$ case. It is also possible to construct vertex operator realizations starting from the present realization.

Acknowledgments

The author is grateful to Professor M Jimbo for his hospitality and many illuminating discussions. He is also thankful to Professor K C Tripathy for useful discussions and Professor H D Doebner for inspiration.

References

[1] Patra M K 1995 20th Int. Coll. on Group Theoretical Methods in Physics ed A Arima, T Eguchi and N Nakanishi (Singapore: World Scientific)
[2] Lusztig G 1989 Contemp. Math. 82 59-77
Andersen H H, Polo P and Wen K 1991 Invent. Math. 104 1-59
[3] McConnell J C and Robson J C 1987 Noncommutative Noetherian Rings (Chichester: Wiley)
[4] Jimbo M 1985 Lett. Math. Phys. 10 63-9
[5] Kashiwara M 1990 Comm. Math. Phys. 133 249-60
[6] Ueno K et al 1989 Lett. Math. Phys. 18
Tolstoy V N 1990 Lecture Notes in Physics vol 370 ed H D Doebner and J D Henning, pp 118-25
[7] Chari V and Pressley A 1995 A Guide to Quantum Groups (Cambridge: Cambridge University Press)
[8] Sun C P, Lu J F and Ge M L J 1991 J. Phys. A: Math. Gen. 24 3731-40 Dobrev V K 1992 J. Phys. A: Math. Gen. 25 149-60
[9] Humphreys J E 1972 J. Algebra 19 51-79
[10] Andrews G E 1976 The Theory of Partitions (London: Addison-Wesley)
[11] Zu Y J 1991 J. Phys. A: Math. Gen. 24 L399-L402
Quesene C J 1991 J. Physique 255977
Biedernharn L and Lohe M 1992 Comm. Math. Phys. 146482
[12] Hayashi T 1990 Comm. Math. Phys. 127129
[13] Ganchev A Ch and Petkova V 1989 Phys. Lett. 233B 374-82
[14] Block R E 1979 Bull. Am. Math. Soc. 1247
[15] Gelfand I M and Kirillov A A 1966 Publ. Math. IHES 31509
[16] Frolich J and Kerler T 1993 Quantum Groups, Quantum Categories and Quantum Field Theory (Lecture Notes in Math. 1542) (Berlin: Springer)

