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A realization of quantum algebras—some applications
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Department of Physics, Sri Venkateswara College, University of Delhi, Dhaula Kuan, New Delhi-
110021, India

Received 8 October 1996

Abstract. Some applications of a new realization of quantum algebras are given. Finite-
dimensionalUqsl(n) modules are constructed in a new basis with explicit matrix elements. For
q a root of 1 the structure of Weyl modules forUqsl(3) is analysed in detail. As a corollary, a
partial result on tensor product structure is obtained. Generalizations to other quantum algebras
are briefly discussed. Realizations ofUqsl(n) in terms of difference operators and some unusual
representations are also presented.

A new realization ofq-deformed enveloping algebras in a quotient algebra was reported
recently [1]. Some elementary applications in the case ofUqsl(2) yielded various
representations. A new class of infinite-dimensional representations was also constructed.
In this paper, these techniques are extended to more complicated cases. Naturally, one
needs more sophisticated tools for such an analysis. The tensor product structure, i.e. the
coproduct in the quantum algebras is exploited for this purpose.

Section 1 reviews the realization ofUqsl(n+1) in a quotient algebraQ. Simultaneously,
one obtains a realization ofUsl(n + 1) in Q. Section 2 deals with finite-dimensional
representations. Constructions on our new basis are given along with some explicit
formulae. In particular, the representations corresponding to fundamental weights are
discussed. The non-generic case is covered in section 3 with detailed results in the case
of Uqsl(3)('Uqsu(3)). A different proof is given of a theorem concerning Weyl modules
[2]. As a corollary one obtains partial results on the fusion structure in this case. After a
discussion on the advantages of the present realization further applications of the technique
are given in section 4. First, an illustration of our method in studying the structure of the
tensor product of representations is given. We emphasize that the computations are simpler
compared to those using boson realization and also the standard Cartan–Weyl generators.
Moreover, the equations for singlar vectors are uncoupled and provide a constructive
technique. The second application shows that theq-boson type realization can be obtained
as a special case. Section 4 deals with some infinite-dimensional representations. Besides
giving a q-derivative realization, some unusual irreducible modules are given. A physical
interpretation of these modules in terms of the momentum space representation is given.
We conclude this paper with a discussion on possible applications to infinite-dimensional
algebras and vertex operator realizations.

† E-mail address: mkp@ttdsvc.ernet.in

0305-4470/97/041259+13$19.50c© 1997 IOP Publishing Ltd 1259



1260 M K Patra

1. Realization

LetA be the algebra with unity generated byyi , hi , andc wherei ∈ {1, . . . , n} with defining
relations [hi, yj ] = −ajiyj and all other commutators zero. Here(aij ) is the Cartan matrix
of sl(n+ 1). The following identities are easily verified:

hmi y
n
j = ynj (hi − naji)m. (1)

It thus follows thatyknn . . . y
k1
1 h

mn
n . . . h

m1
1 c

r form a basis (the PBW basis) forA. Moreover,A
has no zero divisors. LetS be the multiplicatively closed set generated by{yi : i = 1, . . . , n}
consisting of theyi ’s. Then (1) implies thatS satisfies the Ore condition [3]. Thus, there is
an algebra of quotients ofA with respect toS i.e. a ringP and an injective mapA −→ P

such that the image of every element ofS is invertible inP and anyp ∈ P can be written
as s−1a where s ∈ S and a ∈ A. Here we identifyA with its image inP . Let q be
an indeterminate andQ be the appropriate completion ofC[q] ⊗ S−1A whereC[q] is the
algebra of rational functions inq. Write formally q = expw and consider the following
elements inQ

Ei = y−1
i

sinh(w/(n+ 1))
(
c +∑αijhj

)
sinhw

Fi = yi
sinh(w/(n+ 1))

(
c +∑βijhj

)
sinh(w)

(2)

where

αij = (j 6 i) = −(n+ 1− j) (j > i)

βij = j (j < i) = −(n+ 1− j) (j > i). (3)

Put

exp

(
w

n+ 1

(
c +

∑
αijhj

))
= ui

exp

(
w

n+ 1

(
c +

∑
βijhj

))
= vi. (4)

It follows that

uiy
m
k = qmσki ymk ui σki = δk,i+1− δki

and

viy
m
k = qmσk,i−1ymk vi . (5)

Here we use the general relation adh(y−1
i ) = −y−1

i adh(yi)y
−1
i . Using these formulae one

obtains

[EiFj ] = δij sinh(whi)

sinhw
.

Moreover, the analogue of Serre-type relations [4] between theFi ’s andEi ’s are easily
verified. Hence, we have a homomorphism fromUqsl(n + 1) into Q which yields a
morphismUsl(n+ 1) −→ Q in the limit q → 1. We thus have a realization of the former.
It is to be noted that this is only an algebra morphism. Observe also that in (2) if one
interchangesαij andβij , respectively, the commutation relations are unaffected. Call this
the dual realization and denote it by a prime, i.e.F ′i = yi sinh(w/(n+ 1) · (c +∑αijhj ))

etc. A useful result is the following.
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Lemma 1. In Q

Fki = yki [vi; q]k and (F ′i )
k = (−1)kyi [u

−1
i ; q]k (6)

where [a; q]n = (a− a−1)(aq − a−1q−1) . . . (aqn−1−aq−n+1)(q−q−1)−n for n = 1, 2, . . .
and [a; q]n = 1 for n = 0, and [n]! = [q; q]n is the (modified)q-shifted factorial. Set
[n] = (qn − q−n)/(q − q−1).

The proof is an easy consequence of (2) and induction.
It is to be observed that instead of the generatorsyi andhi one could start withyi and

gi = exp(whi/n + 1) = thi . Then we consider a groupG generated byyi, gi, t , andµ
with defining relationsgiyj = t−aji yjgi . LetK be a field andKG the corresponding group
algebra. By identifyingqc with µ (andtn+1 = q) in (2) one gets a realization ofUqsl(n+1)
in a group algebra. However, we do not pursue this line of thought in this paper.

2. Representations

Any representation of the algebraA in which the yi ’s act as invertible operators will
automatically yield a representation ofUqsl(n+1). We assume throughout this section that
q is not a root of unity. Consider anA-moduleN generated byS ·v, such thathiv = λ(hi)v,
whereλ ∈ H ∗, the dual ofH generated by thehi ’s. We are primarily interested in the
highest weight modules. Thus ifv is a highest weight vector it must be annihilated byN+,
the subalgebra generated byEi ’s. This imposes a condition on the highest weightλ. In
fact, by this direct method theUqsl(n+1) modules constructed have highest weightskλ1 or
kλn with λi , the ith fundamental weight andk an arbitrary complex number. However, by
repeated tensoring one can obtain modules with arbitrary weights. The advantage is a very
simple basis and easy computations. Consider first the finite-dimensional representations in
the generic case. It is easily seen that the requirement of finite dimensionality impliesk

must be a non-negative integer.
Let v a be weight vector with weightkλ1, i.e. h · v = kλ1(h) · v. Let the extended

Q-moduleM = {yknn . . . yk1
1 · v | ki ∈ Z}. Let the generators ofUqsl(n+ 1) be given by the

realization (2) such that the central elementc act as the scalar−k. Thus one hasEi ·v = 0,
i = 1 . . . n. Moreover, using formula (2) it follows that

Eiy
kn
n . . . y

k1
1 · v = [ki+1− ki ]yknn . . . yki−1

i . . . y
k1
1 · v

Fiy
kn
n . . . y

k1
1 · v = [ki − ki−1− kδi1]yknn . . . y

ki
i . . . y

k1
1 · v. (7)

Similarly for the dual module corresponding to the highest weightkλn one hasc = k and

E′iy
kn
n . . . y

k1
1 · v = [ki − ki−1]yn . . . y

ki+1
i . . . y

k1
1 · v′

F ′i y
kn
n . . . y

k1
1 · v = [ki+1− ki + kδin]yknn . . . yki+1

i . . . y
k1
1 · v. (8)

The above formulae enable one to read off the singular vectors, i.e. allu ∈ M s.t.Eiu = 0
(or Fiu = 0) for i = 1, . . . , n. Thus, in the case ofkλ1, the onlyE-singular vector is
v and theF -singular vector isykn . . . y

k
1 · v. Therefore, the subspaceV of M spanned by

yknn . . . y
k1
1 · v, with 06 kn 6 · · · 6 k1 6 k, is in fact anUqsl(n+ 1) submodule. Since it is

finite-dimensional with an essentially uniqueE-singular vector it is irreducible. Similarly,
V (kλn) is spanned byyknn . . . y

k1
1 · v with k > kn > · · · > k1 > 0. The formulae (7)

provide the matrix elements. Moreover, we have a natural pairing corresponding to the
transpositionsi ↔ n+ 1− i. It may be noted that with some modification the above bases
correspond to the crystal bases of Kashiwara [5] for the modules concerned.
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Next we consider modules corresponding to other fundamental weights. As mentioned
earlier these can be constructed by appropriate tensor products. One has to use the coproduct
structure inUqsl(n + 1). There is a coproduct inQ. The relation between these two
coproducts, if any, should be interesting. But we use only the well known coproduct in
Uqsl(n+ 1). These are given by, settingKi = qhi ,

M(h) = h⊗ 1+ 1⊗ h h ∈ H (9)

M(Ei) = Ei ⊗ 1+Ki ⊗ Ei (10)

and

M(Fi) = Fi ⊗Ki + 1⊗ Fi. (11)

These formulae define the action of the generators onM⊗N whereM andN areUqsl(n+1)
modules. This is further extended to an arbitrary but finite number of tensor products.

Now, consider the moduleV = V (λ1) (i.e. the regular representation). LetE =∑n
k=0

∧k
(V ) denote the sum of thekth exterior powers ofV . As in the case ofsl(n+ 1)

the ‘k-vectors’,v ∧ y1v ∧ · · · ∧ yk−1 . . . y1v generate the moduleV (λk). In fact, the explicit
formulae can be written down with ease. Thus, letv(i) = yi−1 . . . y1v. The k-vectors
v(i1) ∧ · · · ∧ v(ik), i1 < · · · < ik, spanV (λk). One sees easily that the matrix elements in
this basis are identical to those in the ordinary case(q → 1). From the modulesV (λi) one
constructsV (kiλi) by taking symmetric powers and then computes the matrix elements for
anyV (λ). The calculations are simple but tedious. The details are given only forUqsl(3)
below. It may be noted that various aspects of this case have been investigated by other
methods [6]. However, the present method besides covering these aspects extends to the
difficult case whenq is a root of 1.

The algebraUqsl(3) is special in thesl(n + 1) series. The only two fundamental
modules are the regular representation and its dual. Therefore, from the construction above
any moduleV (λ) with λ = k1λ1+ k2λ2, k1, k2 > 0, is easily constructed. For this we have
to use the coalgebra structure inUqsl(3). The following lemma is well known [6].

Lemma 2.

M(Eni ) = (M(Ei))n =
n∑
0

[
n

k

]
qn(n−k)Eki K

n−k
i ⊗En−ki

M(Fi)n =
∑[

n

k

]
qn(n−k)F ki ⊗Fn−ki K−ki (12)

where [
n

k

]
= [n]!

[k]![ n− k]!
.

This is an analogue of the binomial theorem forq-commuting variables and easily proved
by induction.

Let V (jλ1) be theUqsl(3)-module with generators byEi and Fi , i = 1, 2. The
action of these generators is given by (7). Similarly,V (kλ2) is defined via the action of
E′i and F ′i . If x and z are the respective highest weight vectors then bases forV (jλ1)

and V (kλ2) are given byym1
1 y

m2
2 · x and yn1

1 y
n2
2 · z, with m1 > m2 and n2 > n1. Let

λ = jλ1 + kλ2 andW = V (jλ1) + V (kλ2). The latter is reducible but one finds the
indecomposable components, for example the irreducible submoduleV (λ) generated by
x ⊗ z. For q generic,W is completely reducible andV (λ) is irreducible [7]. In general,
neither of these statements is true in the non-generic case (q is a root of 1). In any case, the
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Weyl modulesV (λ) are of fundamental importnace. Letv = x ⊗ z be the highest weight
singular vector that generatesV (λ). The usual basis forV (λ) is Fm3

3 F
m2
2 F

m1
1 · v, where

F3 = F1F2− q−1F2F1. Consider now the relation between the two bases discussed here.

Lemma 3. The following identity holds inUqsl(3):

Fn2F
m
3 (x ⊗ z) = q−jr

∑
r

[
m

r

]
qm(m−r)F r3 · x ⊗ Fn2Fm−r3 · z. (13)

Proof. Note thatM(F3) = F3 ⊗ q−h3 + 1 ⊗ F3 + (q − q−1)F2 ⊗ q−h2F1. Since
F2 · x = F1 · z = 0 andM(f ) · (x ⊗ z) = F3 · x ⊗ q−h3 · z + 1 ⊗ F3 · z the above
identity follows from theq-binomial theorem and the fact thatF2F3 = q−1F3F2. �

Theorem 1. Let x andz be the highest weight vectors inV (jλ1) andV (kλ2), respectively.
The actions of the generators ofUqsl(3) on the respective modules are given by (7) and
(8) (for n = 2). Then

Fc1F
b
2F

a
3 (x ⊗ z) =

∑
r,s

αqt
[
a

r

] [
c

s

]
[q−j+r; q]s [q

b; q−1]c−s [qk−a+r; q]c−s [qk−a+r; q−1]b

×[qk; q−1]a−ryr+s1 yr2 · x ⊗ ya+c−r−s1 ya+b−r2 · z (14)

where

t = −(k + 1)r + (a − r − b)s + (a − r)r + (c − s)s
and

α = (q − q−1)a+b+c.

This result follows from the preceding lemma and the formulae (7) and (12).
Next consider the question of reducibility. A Verma module is by definition generated

by a singular vector with highest weight that is annihilated byEi(i = 1, 2). Verma modules
are indecomposable. The Weyl modulesV (λ) are quotients of Verma modules. Both in
the cases of ordinary Lie algebras and theirq-analogues whenq is not a root unityV (λ)
is irreducible. To prove irreducibility in the case ofV (λ) which is finite-dimensional it
is necessary and sufficient that there be no singular vector other than the highest weight
vector. Thus it is essential to find the singular vectors [8] in any finite-dimensional module.
In this direction we have:

Lemma 4. In theUqsl(3)-module,V (jλ1)⊗ V (kλ2), any singular vector is of the form∑
m,n Cmny

m
2 y

n
1 · x ⊗ yM−m2 yN−n1 · z whereCmn satisfy the recursion relations:

Cm,n+1 = qN−n − q−N+n
qn−m+1− q−n+m−1

qj+m−2nCmn (15)

Cm+1,n = −q
M−N+n−m − q−(M−N+n−m)

qm+1− q−m−1
qn−2mCmn. (16)

First, one notes that any singular vector must belong to some weight space of the Abelian
subalgebra generated byhi ’s. Thus it must have the form given above. The recursion
relations follow from direct computation.

Next note that ifq is thepth root of unity then the moduleV (jλ1) is reducible for
j > p/2, p for even and oddp, respectively. For definiteness we consider only the restricted
modules in the non-generic case, i.e.j, k < p; p odd. We can deal with the case of even
p and non-restricted modules with a little more effort.
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Theorem 2. Supposeq is generic orj, k < p if q is a pth root of unity,p odd. Then
any singular vectorv in V (jλ1)⊗ V (kλ2) is given by the formula (up to a scalar multiple)

v =
∑
m,n

Cmny
m
2 y

n
1x ⊗ yN−m2 yN−n1 z

Cmn = [N ]!

[N − n]![m]![ n−m]!
qn(j+1−n)+m(n+1−m) N 6 min(j, k). (17)

Proof. Equation (15) implies that the minimum value ofn is m and the maximumN .
Thus max(m) = n and then (16) impliesM = N . Furthermore, min(m) = 0. Since,
06 m 6 n 6 j andN − n 6 N −m 6 k we getN 6 min(j, k). The coefficientsCmn are
then easily computed from the recursion relations (15) and (16). �

We note the simple form of the singular vectors in our basis. The theorem implies
that the singular vectors belong to the subspaces with weightsλ = jλ1+ kλ2, (j − 1)λ1+
(k − 1)λ2, . . . , (k − j)λ1 assumingj 6 k. Now consider the submoduleV (λ) generated
by x ⊗ z, with highest weightjλ1 + kλ2. For genericq this is the only singular vector in
this submodule. One can infer this from the general theory of representations of quantum
algebra which is parallel to the ordinary case(q = 1). However, we can prove this directly
by showing that the singular vectors in (17) cannot belong to the submodule spanned by
the vectorsFc1F

b
2F

a
3 (x ⊗ z). The second course becomes imperative in caseq is a root of

unity since the classical theorems such as the Weyl reducibility theorem and tensor product
decomposition theorems are not true. We mention in passing that one faces a similar
situation in the case of classical Lie algebras over a field of prime characteristics (modular
Lie algebras) [9]. The method given in the following section for quantum algebras can
easily be adapted to modular Lie algebras.

3. Root of 1 case

Throughout this section it is assumed thatq is a pth root of unity,p odd. As mentioned
earlier, extension to the even case is straightforward with minor changes. Now letv be a
singular vector inV (jλ1) ⊗ V (kλ2) given by the formula (17). Comparing (14) and (17)
one proves the following.

Lemma 5. If a singular vectorv ∈ V (λ) then it has the form

v =
∑
i

diF
i
1F

i
2F

N−i
3 (x ⊗ z) 0< N < min(j, k). (18)

Here the coefficientsdi are to be determined. Translating into our basis we obtain∑
m,n

Cmny
m
2 y

n
1x ⊗ yN−m2 yN−n1 z =

∑
i,r,s

diFi(r, s)αiq
ai (yr+s1 yr2x ⊗ yN−r−s1 yN−r2 z) (19)

Fi(r, s) = (−1)r+s([i]!)2[N − i]![ j ]![ k]!

[s]![ i − s]![ r]![N − i − r]![ s]![ k + r −N ]![ j − r − s]! (20)

ai = −(k + 1)r + (N − i − (r + s))s + (N − (i + r))r, αi = (q − q−1)i−N.

Now, puttingr = m andr + s = n in (19) one obtains a set of equations

Cmn =
N−n∑
l=0

dn−m+lαn−m+lqan−m+l fn−m+l(m, n−m). (21)
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Any singular vectorv given by (18) must satisfy these(N + 1)(N + 2)/2 equations. Thus
our task is to determine the conditions under which (21) has solutions and to calculate the
coefficientsdi . Assuming (21) is satisfied we can calculate the coefficientsdi :

CNN = (−1)Nd0q
−(k+1)N [j ]!

[j −N ]!
(22)

CN−1,N = (−1)Nd1q
−(k+1)(N−1)−1 [j ]![ k]!

[j − 1]![k −N ]!
(23)

CN−i,N = (−1)Ndiq
−(k+1)(N−i)−i2 [j ]![ k]!

[k − i]![ j −N ]!
. (24)

Furthermore, from (21) we get

CN−1,N−1 = (−1)N−1q−k(N−1) [N ]![ j ]![ k]!

[N − 1]![k − 1]![j −N + 1]!
d0

+q−(k+1)N−1 [j ]![ k]!

[k − 1]![j −N+!]!
d1. (25)

Using the preceding formulae this reduces to

CN−1,N−1

CN−1,N
= − [N ]![ j −N ]![ k]!

[N − 1]![j −N + 1]![k − 1]!

CNN

CN−1,N
− q[j −N ]!

[j −N + 1]!
. (26)

Now using (15) and (16) the above simplifies to

q−(j−N+1) = − [j −N ]!

[j −N + 1]!

(
[k]!

[k − 1]!
qk+2+ q

)
. (27)

If q is not a root of unity (27) can be satisfied if and only ifj + k = N − 2 which is
impossible sinceN < min(j, k). Therefore, we have a direct proof of irreducibility of
V (λ) in the generic case. Ifq is apth root of unity (p odd) then (27) is satisfied iff

j + k = p +N − 2. (28)

Now we can prove the main theorem.

Theorem 3. LetV (λ = jλ1+kλ2) be the Weyl module generated forUqsl(3) by a highest
weight singular vectorv. If q is genericV (λ) is irreducible. Ifq is apth (p odd) root of 1
then the following statements are true: (i)V (λ) is irreducible when eitherj + k < p−1 or
j = p−1 or k = p−1; (ii) if j+k = p+N−2,N > 0, j, k < p−1 thenV (λ) is reducible.
The irreducible submoduleV (λ′) of V (λ) is of highest weightλ′ = (j −N)λ1+(k −N)λ2.
The corresponding singular vectorv′ is given by the following formula:

v′ =
N∑
i=0

diF
i
1F

i
2F

N−i
3 · v (29)

di = [k − i]!
[N − i]![ i]! q

ji . (30)

The quotient moduleV (λ)/V (λ′) is irreducible and its dimension is equal to the difference
of dimensions of the corresponding modules given by the Weyl dimension formula for
simple Lie algebras overC.
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Proof. The first assertion has already been proved except for the casej or k = p − 1.
However, this is easy to see since (28) is satisfied forN = j + 1 (assumingk = p − 1)
and by theorem 2 all singular vectors satisfyN < min(j, k). To prove (ii) note first that
the Weyl moduleV (λ) is by definition obtained from the corresponding irreducible module
by appropriate specialization inC[q] [7]. One can carry out these steps because of the
existence of a ‘Z-basis’ inUqL for any simple Lie algebraL. Explicitly, let ε be root of
unity and letK be the image of the homomorphismC[q] −→ C[ε] sendingq → ε. Let
Vε(λ) = V (λ)

⊗
K C whereV (λ) is the highest weightUqL module whenq is a formal

variable. ThenVε(λ) is the Weyl module corresponding toλ. We drop the formal notation
and treatq as a root of unity and note that the Weyl module is isomorphic to the tensor
product modules considered above. Hence, to show thatv′ given by (29) is a singular vector
it suffices to show thatdi satisfy the equations (21). Note that ifdi satisfy (21) then they are
determined uniquely up to a constant (24). In fact, (29) follows (24) and (17). Substituting
the values ofdi in (21) and simplifying we have to prove the following identity

qn(j+1−N)+m(k+2)

[N − n]!
= α(−)n

N−n∑
r=0

q(j−n)(r+n−m)[k − s − r]![ s + r]!
[r]![N − n− r]![ k +m−N ]![ s]![ j − n]!

(31)

wheres = n−m andα is a constant independent ofn andm. For proving (31) we require
the following.

Lemma 6. Let q be apth root of unity and suppose it is given thatA,B ∈ Z+ be such
thatA,B 6 p − 1 andA+ B = p + t , then forh 6 t

h∑
k=0

[A]![B]!

[k]![A− k]![h− k]![B − h+ k]!
q−Ah+tk = [t ]!

[t − h]![h]!
. (32)

Formula (32) is simply an adaptation of a well known relation among Gaussian binomial
coefficients [10] to our notation. On the right-hand side,t instead ofA + B appears due
to the fact thatq is a root of unity. Furthermore, defining for any integeri 6 p − 1,
i ′ = p − 1− i we have

[i]! = (−1)i
p

[i ′]!
. (33)

Then apart from an irrelevant factor the right-hand side of (31) is equal to

q(j−n)(n−m)

[j − n]!
·
N−n∑
r=0

[s]![ j −m+ 1]!

[s − r]![ r]![ j −N + s + r + 1]![N − n− r]! q
r(j−n).

Now using the lemma and the fact thats = n−m it is easily seen that apart from a factor
independent ofm and n the last expression is equal to the left-hand side of (31). The
theorem is proved. �

It may be observed that with a little more effort the general non-restricted case, i.e.
allowing k>p may be treated by this method. In the case of evenp replacep by p/2
everywhere in the theorem above. Note also that the case of ordinary Lie algebras over a
field of characteristicp has a parallel representation theory. In fact, a part of the theorem
has been proved for arbitraryUqL by different methods [2]. However, the present method
yields more viz an explicit construction of singular vectors in terms of two bases—the
standard one and a polynomial basis given here. Furthermore, an analysis parallel to the
one above would also yield theFi-singular vectors (i.e. those annihilated byFi) which can
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also be derived by using an appropriate involution operater one-singular vectors. Using
these one can build a picture of indecomposableUqsl(3) modules. Besides, theorem 3 along
with the results preceding it can be used to obtain a tensor product theorem for modules of
typeV (jλ1) andV (kλ2). Thus we have the following.

Corollary 1. Using the notation of the theorem andδ = α1 + α2 whereα1 andα2 form
the root basis ofsl(3) andj 6 k < p − 1

V (jλ)⊗V (kλ) = W1⊕W2

W1 = V (λ)⊕ V (λ− δ)⊕ · · · ⊕ V (λ−N ′δ)
N ′ = (N − 1)/2, (N − 2)/2 for odd and evenN , respectively, and

W2 = V (λ− (N + 1)δ)⊕ V (λ− (N + 2)δ)⊕ · · · ⊕ V (λ− jδ)⊕X
whereX = 0 for N odd andX = V (λ− (N/2)δ) for evenN . W1 is completely reducible
andW2 is a direct sum of indecomposable modules described in the theorem.

There are some papers [11] which use established techniques (Gelfand–Tsetlin
construction,q-boson realization etc) and partially overlap the matters discussed here.
Therefore, it seems appropriate to make some comparisons of the present techniques with
the standard techniques. First, this is a realization in the semidirect product of two power
series algebras. The computations are easier. Second, the calculation of singular vectors
is more managable because the recursion relations such as (15) and (16) are uncoupled in
contrast to the direct methods using the Cartan–Weyl basis where a consistency requirement
is imposed. We illustrate this fact later. From the singular vectors others vectors can be
constructed using, for example, formulae such as (14). Moreover, the explicit construction
of a basis can be generalized to higher algebras. Thus the present realization can be used as
a supplement to the Gelfand–Tsetlin technique and one would expect that the combination
of the two would yield rich dividends. Finally, we can embed other quantum algebras in
an appropriate quotient algebra. Examples ofAn, andCn are given later.

4. Further generalizations

First consider the singular vectors in the moduleV (k1λ1)⊗ V (k2λ2)⊗ V (jλ1). A typical
homogeneous element is of the form∑

Cm1m2n1n2(y
m1
1 y

m2
2 u⊗ yn1

1 y
n2
2 v ⊗ yN1−m1−n1

1 y
N2−m2−n2
2 )w

whereu, v, andw are the respective primitive generators andN1, N2 are fixed. This is a
singular vector if and only if the coefficients satisfy the following set of relations:

[m2−m1− 1]Cm1+1m2n1n2 + qλ1−2m1+m2[n1+ 1]Cm1m2n1+1n2

= − qλ1−2m1+m2−2n1+n2[N2−m2− n2−N1+m1+ n1]Cm1m2n1n2

and

−[m2+ 1]Cm1m2+1n1n2 + q−2m2+m1[n2− n1+ 1]Cm1m2n1n2+1

= qλ2−2m2+m1−2n2+n1[N2−m2− n2]Cm1m2n1n2.

From the structure of the modules we know thatm2 6 m1 6 k1 andn1 6 n2 6 k2. Thus
the minimum value form1 is m2 and for n2 it is n1. We can also deduce that for fixed
m2, n2 max(m1) = N1 − N2 + m2 and for fixedm1, n1 max(n2) = N2 − m1. Moreover,
(N1−N2) > (m1 − m2) − (n1 − n2). In particular,N1 > N2. Note that the two sets of
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equations are not coupled in contrast to the standard technique with the Cartan–Weyl basis.
We also have min(m1+ n1) = N1− j and min(m2+ n2) = N2− j . Next note that for the
coefficient of the formCr+krss the first equation reduces to

Cr+k+1rss = −qλ1−r−s−2k [N1−N2− 2r − k + 2s]

[k + 1]
Cr+krss .

Thus

Cr+krss = (−1)kq(λ1−r−s−k)(k−1)[N1−N2− 2r − 2s; q]([k]!)−1Crrss . (34)

Similarly,

Crrss+k = q(λ2−s−k)(k−1)([k]!)−1[n2− 2s; q−1]Crrss . (35)

It is seen thatC0011, C0022, . . . , C00N2N2 already determine the rest ofCrrss . Moreover, one
shows easily that 06 N1−N2 6 j and lettingN1−N2 = r we haver 6 N1 6 j+k1−r and
06 N2 6 k2+ r. The last two follow because the highest weight must be dominant. Since
the coefficientsC00kk, k 6 N2, can be chosen independently the number of times a particular
module corresponding to a fixed(N1, N2) appears in the productV (k1λ1)⊗V(k2λ2)⊗V (jλ1)

is equal to min(N2+1, N1+1). The coefficientsCm1m2n1n2 can be computed from the above
relations. These yield all singular vectors whenq is the root of 1. But of course, in the
latter case there is a lot of collapsing as we have seen in theorem 3. Again the method used
in proving the product structure may be applied in this case. However, the computations are
involved and it seems likely that some summation formula involving basic hypergeometric
series will come in to play again (the simplest such formula is theq-Chu–Vandermonde
formula for the series used in theorem 3).

Next using the coproduct structure we give a realization in the case ofUqsl(n) which
yields a polynomial basis for all finite-dimensional modules. LetB =⊕n

1A
(i) be the direct

sum ofm copies ofA defined in section 2. Writex(i) for an element inA(i) and consider
the following realization

Ei =
m∑
j=1

j−1∏
r=1

K
(r)
i y

(j)

i (w
(j)

i − (w(j)i )−1) (36)

wherew(j)i is eitherui or vi . This can yield all finite-dimensional representations on factor
rings of appropriate polynomial rings.

We end this section with formulae giving a related realization of quantum algebras
corresponding to classical Lie algebrasAn andCn. Note that if we put

Ni =
∑
j

αi−1jhj =
∑

βijhj

thenFi = yi [Ni+1], Ei = y−1
i [Ni ], andKi = qNi+1−Ni for 1 6 i 6 n gives a realization of

Uqsl(n). We could start with generatorsyi , Ni and defining relations

[Niyk] = (δik − δik−1)yk. (37)

Note that we have(n+ 1) generatorsNi . Let zi , i = 1, . . . , n, be defined such that

[Nizj ] = δij zj . (38)

Then setting

yi = ziz−1
i+1 (39)

we obtain a realization of (37). Now using these new generators we can get realizations of
the quantum algebras of respective classical algebras as follows.
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UqAn

Fi = ziz−1
i+1[Ni+1]

Ei = zi+1z
−1
i [Ni ]

Ki = qNi+1−Ni (40)

UqCn

Fi = ziz−1
i+1[Ni+1]

Ei = zi+1z
−1
i [Ni ]

Ki = q(Ni+1−Ni) i = 1, . . . , n− 1

Fn = z2
n

En = −z−2
n

[
Nn

2

]
Kn = −[2Nn + 1]. (41)

We note that, unlike the undeformed case,Bq(n) and Dq(n) have realization only in
Fermionic generators [12]. Therefore, although we can obtain realization ofBn andDn

in our generators it is not possible to extend this directly to the deformed case, the reason
being that in the latter case the coproduct is not cocommutative.

5. Operator realizations

In this section we construct some infinite-dimensional representations. First, we have a
realization of the algebraA in terms of differential operators. See [13] for a similar
construction forUqsl(2). Let B = C[zi, z

−1
i ; i = 1, . . . , n] be the algebra of Laurent

polynominals inz, treated here as a formal power series. LetD denote the derivation
z(∂/∂zi) and setDi = 0 if i = 0 or n+ 1. Let

hi = Di−1− 2Di +Di+1 (42)

and

yi = zi . (43)

Then [hiyj ] = −αjiyi . Therefore, using (2) we obtain the realization (puttingc = 0):

Ei = z−1
i

qDi+1−Di − qDi−Di+1

q − q−1

Fi = zi q
Di−Di−1 − qDi−1−Di

q − q−1
. (44)

In terms of the shift operatorsTi · f (z1, . . . , zi, . . .) = f (z1, . . . , qzi, zi+1, . . .)

Ei = z−1
i

Ti+1T
−1
i − TiT −1

i+1

q − q−1

Fi = zi
TiT

−1
i−1− T −1

i Ti−1

q − q−1
. (45)

One could also write the above in terms of partialq-derivatives but (45) is more useful. Let
us briefly consider a possible method of constructing an infinite-dimensional representation.
Let A be an Abelian algebra with generators{αi} and suppose thatA has no zero divisors.
Let B ⊂ Der(A) be an Abelian subalgebra of Der(A), the algebra of derivations ofA.
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Let S be the subalgebra ofA generated by simultaneous eigenvectors ofB. Then, setting
hi =

∑
jd

(i)
j , d(i)j ∈ B, and choosingyk ∈ S we get a set of linear equations such that

[hiyj ] = −ajiy. Then using (2) one obtains a realizaton ofUqsl(n+1). Note that we could
slightly generalize this by puttingh = k + D, k constant, and choosingk appropriately.
One could then calculaten-point functions for the modules [13].

Finally, let us consider an unusual representation corresponding to Whittaker modules
[1, 14]. Thus, letX ={f (z1, . . . , zn):f is meromorphic in each variable}. The domains of
definitions off ∈ X will be left unspecified. Letz = (z1, . . . , zn)

hif (z) = zif (z)
yi · f (z) = f (z1, . . . , zi−1− 1, zi + 2, zi+1− 1, . . . , zn).

Then,hi andyj satisfy the basic commutation relations. Note thathi is no longer diagonal.
In terms of operators

Ei = q(
∑
αij zj−1) − q−(

∑
αij zj−1)

= exp(∂i−1− 2∂i + ∂i+1)

q − q−1
.

Still another similar non-standard realization ofUqsl(n+ 1) is given by defining

hif (z) = zif (z)
yif (z) = f (z1, . . . , zi−1− 1, zi + 2, zi+1+ 1, . . . , zn)

(zi−1− 1)(zi + 2)(zi+1− 1)
. (46)

Therefore,

Ei = q
∑
αij zj−1− q−

∑
αij zj−1

(zi−1+ 1)(zi − 2)(zi + 2)(q − q−1)
exp(−∂i−1+ 2∂i − ∂i+1). (47)

Similarly for Fi .
We can interpret these realizations as follows. Let us start with a representation ofA

in coordinate space:

hk = −ι∂k (48)

yk = expι(zk−1− 2zk + zk+1). (49)

The momentum space representations of these operators via Fourier transforms and their
complex cojugates are precisely the representations given above.

6. Conclusion

Some concluding remarks are in order. It is to be observed that the algebraQ = S−1A is
isomorphic to a subalgebra of the enveloping field of a Heisenberg algebra [15]. However,
note that we have to find a representation ofA such that theyi ’s are invertible to yield
a representation ofsl(n + 1) andUqsl(n + 1). The representations are on the space of
polynomials. We have already noted the relative merits and limitations of this realization.
Using this one can get all the results that are computable using the Cartan–Weyl generators
or the q-boson realization. Moreover, as discussed at the end of section 3 in the more
complicated cases the present method demands relatively easier computations. In section 4
we have obtained some results on the fusion structures inUqsl(3) modules. This could
be a starting point for more complete results with possible applications to quantum field
theories with non-semisimple gauge symmetry [16]. Note also that the realization (2) yields
a realization ofUqA(∞) provided we replace then in those formulae by any constant
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(6= − 1). However, we can pass over to the affine algebrassl(n)∧ case. It is also possible
to construct vertex operator realizations starting from the present realization.
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