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Abstract. Some applications of a new realization of quantum algebras are given. Finite-
dimensionalU, sI(n) modules are constructed in a new basis with explicit matrix elements. For

g aroot of 1 the structure of Weyl modules foy,s/(3) is analysed in detail. As a corollary, a
partial result on tensor product structure is obtained. Generalizations to other quantum algebras
are briefly discussed. Realizationsldfsi(n) in terms of difference operators and some unusual
representations are also presented.

A new realization ofg-deformed enveloping algebras in a quotient algebra was reported
recently [1]. Some elementary applications in the caseUpf/(2) yielded various
representations. A new class of infinite-dimensional representations was also constructed.
In this paper, these techniques are extended to more complicated cases. Naturally, one
needs more sophisticated tools for such an analysis. The tensor product structure, i.e. the
coproduct in the quantum algebras is exploited for this purpose.

Section 1 reviews the realization b s/(n+1) in a quotient algebr@. Simultaneously,
one obtains a realization dsi(n + 1) in Q. Section 2 deals with finite-dimensional
representations. Constructions on our new basis are given along with some explicit
formulae. In particular, the representations corresponding to fundamental weights are
discussed. The non-generic case is covered in section 3 with detailed results in the case
of U,sl(3)(=U,su(3)). A different proof is given of a theorem concerning Weyl modules
[2]. As a corollary one obtains partial results on the fusion structure in this case. After a
discussion on the advantages of the present realization further applications of the technique
are given in section 4. First, an illustration of our method in studying the structure of the
tensor product of representations is given. We emphasize that the computations are simpler
compared to those using boson realization and also the standard Cartan—Weyl generators.
Moreover, the equations for singlar vectors are uncoupled and provide a constructive
technique. The second application shows thatgthmson type realization can be obtained
as a special case. Section 4 deals with some infinite-dimensional representations. Besides
giving a ¢-derivative realization, some unusual irreducible modules are given. A physical
interpretation of these modules in terms of the momentum space representation is given.
We conclude this paper with a discussion on possible applications to infinite-dimensional
algebras and vertex operator realizations.

1 E-mail address: mkp@ttdsvc.ernet.in
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1260 M K Patra
1. Realization
Let A be the algebra with unity generated fy ;, andc wherei € {1, ..., n} with defining

relations h;, y;] = —a;;y; and all other commutators zero. Heig;) is the Cartan matrix
of si(n + 1). The following identities are easily verified:

by = yi (hi —na;;)". 1)
It thus follows thaty® ... y}* k™ ... hi¢" form a basis (the PBW basis) far. Moreover,A
has no zero divisors. L&t be the multiplicatively closed set generated{by: i =1, ..., n}

consisting of they;’s. Then (1) implies thaf satisfies the Ore condition [3]. Thus, there is
an algebra of quotients of with respect toS i.e. a ring P and an injective mapt — P
such that the image of every element®fs invertible in P and anyp € P can be written
assla wheres € S anda € A. Here we identifyA with its image inP. Let g be
an indeterminate an@ be the appropriate completion 6f¢g] ® S~tA whereC[q] is the
algebra of rational functions ip. Write formally ¢ = expw and consider the following
elements inQ

_,sinhw/(n + 1) (c + Y aijh))

E,‘ =Y, n
! sinhw
sinh(w/(n + 1)) (c + Y Bijh;)
P =% Sinh( @)
w)
where
aj=(<i)=—n+1-j) (>0
Bii=Jj(j<i)=—-mn+1-)) (J=0. ©))
Put

exp(n v 1(0 + Zmﬂ;)) = u;
ool 2o+ o)

It follows that

g +

uiyy =q" " ylu; Oki = Ok,i+1 — Oi
and
viyy = q" %y v (5)

Here we use the general relation/ag; ) = —y tadh(y;)y . Using these formulae one
obtains
sinh(wh;)

sinhw
Moreover, the analogue of Serre-type relations [4] betweenFte and E;'s are easily
verified. Hence, we have a homomorphism frdmsi(n + 1) into Q which yields a
morphismUsi(n + 1) — Q in the limitg — 1. We thus have a realization of the former.
It is to be noted that this is only an algebra morphism. Observe also that in (2) if one
interchangesy;; and g;;, respectively, the commutation relations are unaffected. Call this
the dual realization and denote it by a prime, .= y; sinh(w/(n + 1) - (c + Y_ aijh;))
etc. A useful result is the following.

[EiF;] =6
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Lemmal InQ

Ff=)uiqle  and  (F)' = (—=D'ylu; gl ©)
where p; gl, = (@ —a Yag —a ¢V ... (ag" t—aqg "t (g—g H " forn=1,2,...
and f; ¢], = 1 forn = 0, and k]! = [q¢; ¢q]. is the (modified)g-shifted factorial. Set
["=(@@"—q"/@q—-q".

The proof is an easy consequence of (2) and induction.

It is to be observed that instead of the generatprand; one could start withy; and
gi = exp(wh;/n +1) = t". Then we consider a grou@ generated by, g;, ¢, and u
with defining relationg; y; = t~%y;g;. Let K be a field andk G the corresponding group
algebra. By identifying;¢ with x (and¢"*! = ¢) in (2) one gets a realization @f,s/(n+1)
in a group algebra However, we do not pursue this line of thought in this paper.

2. Representations

Any representation of the algebr& in which the y;’s act as invertible operators will
automatically yield a representation Gfsi(n + 1). We assume throughout this section that

g is not a root of unity. Consider aft--moduleN generated by - v, such thati;v = A(h;)v,
wherel € H*, the dual of H generated by thé;’s. We are primarily interested in the
highest weight modules. Thusiifis a highest weight vector it must be annihilated My,

the subalgebra generated By's. This imposes a condition on the highest weightIn

fact, by this direct method th&, s/ (n + 1) modules constructed have highest weigtits or

kX, with A;, theith fundamental weight ank an arbitrary complex number. However, by
repeated tensoring one can obtain modules with arbitrary weights. The advantage is a very
simple basis and easy computations. Consider first the finite-dimensional representations in
the generic case. It is easily seen that the requirement of finite dimensionality irkplies
must be a non-negative integer.

Let v a be weight vector with weighti, i.e. h-v = kAy(h) - v. Let the extended
Q-moduleM = {yk ...y’l‘1 -v | ki € Z}. Let the generators df,s!(n + 1) be given by the
realization (2) such that the central elemeratct as the scalark. Thus one ha&; -v = 0,

i =1...n. Moreover, using formula (2) it follows that

E,-y,’;" .. .yll<1 v = [kiv1 — k,-]y,]j“ . ..yf"_l. . .yll<1 ‘v

Ey,’f" .. .y]l‘1 v =[ki —ki_1— k8i1]y,]:” .. .yf’ .. .y]{l -, )
Similarly for the dual module corresponding to the highest weightone has = k and

E|yk ... y]{1 v =[ki —ki_1]yn .. .y;‘i*l .. .y’{1 v

Flyk . .y]lcl v = ki1 — ki + k8 ]k .. yf”l ... y]{1 . (8)
The above formulae enable one to read off the singular vectors, ie.calM s.t. E;u =0
(or FFu = 0) fori = 1,...,n. Thus, in the case ofxy, the only E-singular vector is

v and theF-singular vector isy* . ..y’l‘ -v. Therefore, the subspadé of M spanned by
vyt v, with 0 < k, < -+ < kg <k, is in fact anU, sl(n + 1) submodule. Since it is
finite-dimensional with an essentially uniqégsingular vector it is irreducible. Similarly,

V (kA,) is spanned byy* ...y’l‘1 o withk >k, > --- > ki > 0. The formulae (7)
provide the matrix elements. Moreover, we have a natural pairing corresponding to the
transpositions <> n + 1 —i. It may be noted that with some modification the above bases
correspond to the crystal bases of Kashiwara [5] for the modules concerned.
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Next we consider modules corresponding to other fundamental weights. As mentioned
earlier these can be constructed by appropriate tensor products. One has to use the coproduct
structure inU,sl(n + 1). There is a coproduct irQ. The relation between these two
coproducts, if any, should be interesting. But we use only the well known coproduct in
U,sl(n + 1). These are given by, setting; = ¢,

A =h®1+1Qh heH 9)
AME)=E ®1+K; ®E (10)
and
AF)=F®K +1®F,. (11)

These formulae define the action of the generator®@wW whereM andN areU,sl(n+1)
modules. This is further extended to an arbitrary but finite number of tensor products.

Now, consider the modul& = V(i;) (i.e. the regular representation). Lé&t =
Yo /\k(V) denote the sum of thith exterior powers o. As in the case ofl(n + 1)
the ‘k-vectors’,v A yjv A--- A y—1...y1v generate the modul€(i;). In fact, the explicit
formulae can be written down with ease. Thus, dgf = y;_1...y1v. The k-vectors
Vi A - A G, i1 < -+ < ix, SpanV (k). One sees easily that the matrix elements in
this basis are identical to those in the ordinary c@se> 1). From the module¥ (1;) one
constructsV (k; 1;) by taking symmetric powers and then computes the matrix elements for
any V(A). The calculations are simple but tedious. The details are given only fai(3)
below. It may be noted that various aspects of this case have been investigated by other
methods [6]. However, the present method besides covering these aspects extends to the
difficult case whery is a root of 1.

The algebralU,si(3) is special in thesi(n + 1) series. The only two fundamental
modules are the regular representation and its dual. Therefore, from the construction above
any moduleV (A) with A = kydq + koAo, kg, k2 > 0, is easily constructed. For this we have
to use the coalgebra structurelfysi(3). The following lemma is well known [6].

Lemma 2
" n
AE]) = (M(E))" = Z[ ]q"<"—k>E{<K;lk®E;’k
o Lk
n
A E n — n(n—k)Fk®FVl7kK7k 12
(Fi) Z[k]q FRF K, (12)
where

This is an analogue of the binomial theorem ferommuting variables and easily proved
by induction.

Let V(jr1) be the U,si(3)-module with generators b¥; and F;, i = 1,2. The
action of these generators is given by (7). Similafk),) is defined via the action of
E! and F!. If x andz are the respective highest weight vectors then base%’ {gi)
and V(kiy) are given byy/"y3? - x and y;*y;? - z, with m; > my andny > nq. Let
A= jir+ ki and W = V(jr1) + V(kiy). The latter is reducible but one finds the
indecomposable components, for example the irreducible submaddule generated by
x ® z. Forg generic,W is completely reducible anét (1) is irreducible [7]. In general,
neither of these statements is true in the non-generic gaisea(root of 1). In any case, the
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Weyl modulesV (1) are of fundamental importnace. Let= x ® z be the highest weight
singular vector that generat@s(1). The usual basis fo¥ (1) is F3°F,?F;"* - v, where
F3 = F1F, — g 1F,F;. Consider now the relation between the two bases discussed here.

Lemma 3 The following identity holds inl,si(3):

n pm —jr m m(m—r) gr n pm—r
BFRPGacod=q¢"Y | |q Fj - x @ FyF)™ - 2. (13)
P r
Proof. Note thatA(F3) = Fa® ¢ ™ +1® F3+ (¢ — ¢ Y)F>, ® ¢ "2F1.  Since
Fob-x =F-z=0andA(f) - @ ®z) = F3-x®q_;3s-z+ 1Q® F3-z the above
identity follows from theg-binomial theorem and the fact th&pFz = g 1 F3F». O

Theorem 1 Letx andz be the highest weight vectors In(j1;) andV (kx,), respectively.
The actions of the generators 0f,s/(3) on the respective modules are given by (7) and
(8) (forn = 2). Then

a c .
FlcFZbF??(x ®z) = Zaqt [r ] |:Si| [a7*"; qlile”s a Nemsld" " qlemslg" 547,
7,8

A P U T - B S VAL Y- (14)
where

t=—Gk+Dr+@—r—>b)s+@—r)yr+(c—s)s
and

o = (q _ q—l)a+b+c'
This result follows from the preceding lemma and the formulae (7) and (12).

Next consider the question of reducibility. A Verma module is by definition generated
by a singular vector with highest weight that is annihilatedrbyi = 1, 2). Verma modules
are indecomposable. The Weyl modulégi) are quotients of Verma modules. Both in
the cases of ordinary Lie algebras and thgianalogues wheg is not a root unityV (1)
is irreducible. To prove irreducibility in the case &f(A) which is finite-dimensional it
is necessary and sufficient that there be no singular vector other than the highest weight
vector. Thus it is essential to find the singular vectors [8] in any finite-dimensional module.
In this direction we have:

Lemma 4 In theU,sl(3)-module,V(ji1) ® V(kXA2), any singular vector is of the form

> i Com Y8 yL - x ® yy' " yy ™" - z whereC,,, satisfy the recursion relations:
N—n —N+n
q —q it
Cmnts = gl — q*n+m71q]+m % Conn (15)
qM—N+n—m _ q—(M—N+n—m)
Cm+1,n = - q”_zmcmm (16)

qm+1 _ qufl

First, one notes that any singular vector must belong to some weight space of the Abelian
subalgebra generated liy’s. Thus it must have the form given above. The recursion
relations follow from direct computation.

Next note that ifg is the pth root of unity then the modul& (jA;) is reducible for
j = p/2, p for even and odg, respectively. For definiteness we consider only the restricted
modules in the non-generic case, ijek < p; p odd. We can deal with the case of even
p and non-restricted modules with a little more effort.
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Theorem 2 Suppose; is generic orj, k < p if ¢ is a pth root of unity, p odd. Then
any singular vectop in V(ji1) ® V(kAy) is given by the formula (up to a scalar multiple)

V=" Cundyyix ®y) "y "z

m,n

[]V]I n(j+1-n)+m(n+1—m i ;
Coun = [N _n]I[m]l[n — m]' q (j+1-n)+m(n+1-—m) N < min(j, k). (17)

Proof. ~ Equation (15) implies that the minimum value mfis m and the maximumv.
Thus maxm) = n and then (16) implies¥ = N. Furthermore, mitm) = 0. Since,
O<m<n<jandN —n < N —m < k we getN < min(j, k). The coefficient<,,, are
then easily computed from the recursion relations (15) and (16). O

We note the simple form of the singular vectors in our basis. The theorem implies
that the singular vectors belong to the subspaces with weightg A, + ko, (j — DA1 +
(k —DAg, ..., (k— j)ry assumingj < k. Now consider the submodulé()) generated
by x ® z, with highest weightjix; + kA,. For genericg this is the only singular vector in
this submodule. One can infer this from the general theory of representations of quantum
algebra which is parallel to the ordinary cage= 1). However, we can prove this directly
by showing that the singular vectors in (17) cannot belong to the submodule spanned by
the vectorsF; F5 F§(x ® z). The second course becomes imperative in gaiea root of
unity since the classical theorems such as the Weyl reducibility theorem and tensor product
decomposition theorems are not true. We mention in passing that one faces a similar
situation in the case of classical Lie algebras over a field of prime characteristics (modular
Lie algebras) [9]. The method given in the following section for quantum algebras can
easily be adapted to modular Lie algebras.

3. Root of 1 case

Throughout this section it is assumed tlgais a pth root of unity, p odd. As mentioned
earlier, extension to the even case is straightforward with minor changes. Navwb&eta
singular vector inV (ji1) ® V(kAz) given by the formula (17). Comparing (14) and (17)
one proves the following.

Lemma5 If a singular vectow € V(1) then it has the form
v = ZdiF{inFéV_i(x ® z2) 0 < N < min(j, k). (18)

Here the coefficientd; are to be determined. Translating into our basis we obtain
D Conysix @y Ty e =Y diFi(r $)eigq® (v ypx @ y) Ty ) (19)
m,n

(=D ([IDIN — i'L1LA]!
[sP[i = s]rPIN —i —r[s)[k+7r—=N]J[j—r—s]
ai=—k+Dr+(N—i—=@+)s+ N -G +rra=(@g-qgH"

Now, puttingr = m andr + s = n in (19) one obtains a set of equations

Fi(r,s) =

(20)

N—n

Cmn = Z dn—n1+lan—m+lqa"_m+’ fn—m+l (ma n — m) (21)
=0
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Any singular vecton given by (18) must satisfy thes&v + 1)(N + 2)/2 equations. Thus
our task is to determine the conditions under which (21) has solutions and to calculate the
coefficientsd;. Assuming (21) is satisfied we can calculate the coefficiénts

'|
Cyy = (—l)Nqu—(k+1)N[j[_J]}v]! 22)
W —kinov-n-1 LAY
Cyoanv = (=1)"dig = 1)k — NI (23)
Cy_in = (=N g~ F+DN=—i2 [/1'[A]! (24)

[k —il'[j = NIt
Furthermore, from (21) we get

[N]'[JI'[A]!
[N -1k —1][j — N + 1! °

_ _ [J1'[&]!
g 1[k Sy — N (25)

Using the preceding formulae this reduces to

Cy-1y-1= (DN g k=D

Cn-iv-1 [N]'[j — N]'[]! Cvv  qlj—NI] (26)
Cnoiy  [N—-1[j—N+1k—1]'Cy_1y [j—N+1]"
Now using (15) and (16) the above simplifies to
g VTN = _[][i ;Vlj_]!l]! <[k[f]'1]' g%+ q) . (27)

If ¢ is not a root of unity (27) can be satisfied if and onlyjif+ k = N — 2 which is
impossible sinceN < min(j, k). Therefore, we have a direct proof of irreducibility of
V() in the generic case. § is a pth root of unity (p odd) then (27) is satisfied iff

j+k=p+N-2 (28)

Now we can prove the main theorem.

Theorem3 LetV (1 = jii1+kAy) be the Weyl module generated 0 s/(3) by a highest
weight singular vectop. If g is genericV (1) is irreducible. Ifg is a pth (p odd) root of 1
then the following statements are true: YiJA) is irreducible when eithefy +k < p—1 or

j=p—lork=p-1;(i)if j+k=p+N—-2,N >0, j, k < p—1thenV(A) is reducible.
The irreducible submodul€(1') of V() is of highest weight’ = (j — N)A1+(k — N)A».

The corresponding singular vectoris given by the following formula:

N
V' =Y diFjFFy v (29)
i=0
[k —i' .
di=—— " g/t 30
(v — i ? (30)
The quotient modulé/ (1)/ V ()') is irreducible and its dimension is equal to the difference
of dimensions of the corresponding modules given by the Weyl dimension formula for
simple Lie algebras ovet.
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Proof.  The first assertion has already been proved except for the jcasé = p — 1.
However, this is easy to see since (28) is satisfiedNoe j + 1 (assumingk = p — 1)

and by theorem 2 all singular vectors satigfy< min(j, k). To prove (ii) note first that

the Weyl moduleV (1) is by definition obtained from the corresponding irreducible module
by appropriate specialization i@[¢] [7]. One can carry out these steps because of the
existence of aZ-basis’ inU, L for any simple Lie algebrd. Explicitly, let ¢ be root of
unity and letK be the image of the homomorphis@iq] — Cl¢] sendingg — €. Let
Ve(h) = V(&) Qg C where V(1) is the highest weight/, L module whery is a formal
variable. ThenV, (1) is the Weyl module corresponding 10 We drop the formal notation
and treatg as a root of unity and note that the Weyl module is isomorphic to the tensor
product modules considered above. Hence, to showtlgiten by (29) is a singular vector

it suffices to show thad; satisfy the equations (21). Note thatj/jfsatisfy (21) then they are
determined uniquely up to a constant (24). In fact, (29) follows (24) and (17). Substituting
the values of7; in (21) and simplifying we have to prove the following identity

qn(j+1—N)+m(k+2) q(j—n)(r+n—m)[k — 5= r]![s + r]|

N—n
TIN—a Z“(_)n; [N —n—rl[k+m — N][s]'[j — n]! (31)

wheres = n —m ande is a constant independent efandm. For proving (31) we require
the following.

Lemma 6 Letg be apth root of unity and suppose it is given that B € Z, be such
thatA,B<p—1landA+ B =p+t, thenforh <t

3 (AN B! I
DY ey ey KA v 1A 8 32

Formula (32) is simply an adaptation of a well known relation among Gaussian binomial
coefficients [10] to our notation. On the right-hand sidenstead ofA + B appears due

to the fact thatg is a root of unity. Furthermore, defining for any integeK p — 1,
i’=p-—1—iwe have

p

i = (=1 . 33

[ = D' (33)
Then apart from an irrelevant factor the right-hand side of (31) is equal to

A [s1)j — m + 17 U

[—nll = [s—rM[rMj—N+s+r+1I[N—n—r]!

Now using the lemma and the fact that= n — m it is easily seen that apart from a factor
independent ofn and n the last expression is equal to the left-hand side of (31). The
theorem is proved. O

It may be observed that with a little more effort the general non-restricted case, i.e.
allowing k>p may be treated by this method. In the case of epereplacep by p/2
everywhere in the theorem above. Note also that the case of ordinary Lie algebras over a
field of characteristipp has a parallel representation theory. In fact, a part of the theorem
has been proved for arbitrafy, L by different methods [2]. However, the present method
yields more viz an explicit construction of singular vectors in terms of two bases—the
standard one and a polynomial basis given here. Furthermore, an analysis parallel to the
one above would also yield th&-singular vectors (i.e. those annihilated By which can



A realization of quantum algebras 1267

also be derived by using an appropriate involution operatee-eimgular vectors. Using
these one can build a picture of indecomposdble/ (3) modules. Besides, theorem 3 along
with the results preceding it can be used to obtain a tensor product theorem for modules of
type V(jA1) andV (kAz). Thus we have the following.

Corollary 1. Using the notation of the theorem add= o3 + a2 wherea; anda, form
the root basis of/(3) andj <k <p -1

VMRV (kL) = Wi & Wa
Wi=VW)OVA—-8)d---dV((—N'S)

N = (N —1)/2, (N — 2)/2 for odd and evem, respectively, and
Wo=VOA-(N+DHBGVOAL-(N+2)D---dV(L—j)dX

whereX =0 for N odd andX = V(A — (N/2)8) for evenN. W is completely reducible
and W5, is a direct sum of indecomposable modules described in the theorem.

There are some papers [11] which use established techniques (Gelfand—Tsetlin
construction, g-boson realization etc) and partially overlap the matters discussed here.
Therefore, it seems appropriate to make some comparisons of the present techniques with
the standard techniques. First, this is a realization in the semidirect product of two power
series algebras. The computations are easier. Second, the calculation of singular vectors
is more managable because the recursion relations such as (15) and (16) are uncoupled in
contrast to the direct methods using the Cartan—Weyl basis where a consistency requirement
is imposed. We illustrate this fact later. From the singular vectors others vectors can be
constructed using, for example, formulae such as (14). Moreover, the explicit construction
of a basis can be generalized to higher algebras. Thus the present realization can be used as
a supplement to the Gelfand—Tsetlin technique and one would expect that the combination
of the two would yield rich dividends. Finally, we can embed other quantum algebras in
an appropriate quotient algebra. ExamplesAgf andC, are given later.

4. Further generalizations

First consider the singular vectors in the modulé;A1) ® V(kor2) ® V(jA1). A typical
homogeneous element is of the form
D Comanin, (6125521 ® ¥y y520 @ yp "My S ey

whereu, v, andw are the respective primitive generators aviy N, are fixed. This is a
singular vector if and only if the coefficients satisfy the following set of relations:
[m2 —mi — 1]Cm1+1mznln2 + q)L172m1+m2[nl + 1]Cm1mznl+ln2

= - qA1—2ml+m2—2n1+nz[N2 —m3 —nz— Nl +my + nl] lemgnlnz
and

—2may+
_[mZ + 1]Cm1mz+ln1n2 + q 2 ml[”Z —n1+ 1]Cm1mgnln2+1
— qA2—21712+m1—2n2+n1[N2 _

From the structure of the modules we know that < m1 < k1 andny < no < k. Thus
the minimum value fomm is m» and forns it is n1. We can also deduce that for fixed
mo, npmax(my) = N1 — No + my and for fixedm,, ny max(n,) = N, — m;. Moreover,
(N1 — Na) > (my — my) — (ny — np). In particular,N; > N,. Note that the two sets of

mp — n2] lemznlnz .
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equations are not coupled in contrast to the standard technique with the Cartan—Weyl basis.
We also have mi@ni + n1) = N; — j and mir(m, 4+ np) = N, — j. Next note that for the
coefficient of the formC, 4, the first equation reduces to
rar—s—2k (N1 — N2 = 2r — k + 2s]

Cr rss-
[k + 1] *k

Cr+k+lrss =—q

Thus

Cratrss = (=D g OEDING — Ny — 2r — 25: q)([k]) " Crpss. (34)
Similarly,

Crrssak = g2 PV R np — 255 ¢7HCrs. (35)

It is seen thaCgp11, Coo2z - - - » Coon,n, already determine the rest 6f,,,. Moreover, one
shows easily that & N1 — N, < j and lettingN;— N, = r we haver < Ny < j+k;—r and
0 < N, < k2 +r. The last two follow because the highest weight must be dominant. Since
the coefficientCoqy, k < N2, can be chosen independently the number of times a particular
module corresponding to a fixéd/;, N,) appears in the produdt (k1r1) ® Vi, ®v (A1)
is equal to mitiN,+1, N1+ 1). The coefficients”,,,,.,1,,, Can be computed from the above
relations. These yield all singular vectors whers the root of 1. But of course, in the
latter case there is a lot of collapsing as we have seen in theorem 3. Again the method used
in proving the product structure may be applied in this case. However, the computations are
involved and it seems likely that some summation formula involving basic hypergeometric
series will come in to play again (the simplest such formula is¢heéhu—Vandermonde
formula for the series used in theorem 3).

Next using the coproduct structure we give a realization in the cagg gfn) which
yields a polynomial basis for all finite-dimensional modules. Bet B A be the direct
sum ofm copies ofA defined in section 2. Write® for an element indA® and consider
the following realization

m j—1 ) ] )
E; = ZU_Ki(r)yi(J)(wi(J) _ (wi(j))fl) (36)

j=1r

Wherew,.(j) is eitheru; or v;. This can yield all finite-dimensional representations on factor
rings of appropriate polynomial rings.
We end this section with formulae giving a related realization of quantum algebras

corresponding to classical Lie algebras andC,. Note that if we put
N; = Zai—ljhj = Zﬂijhj
j

then F; = yi[Niyal, Ei =y, '[Ni], and K; = ¢Vi++~Ni for 1 < i < n gives a realization of
U,sl(n). We could start with generatoss, N; and defining relations

[Niyi] = Gik — Sik—1) k- (37)
Note that we havén + 1) generatorsV;. Letz;, i =1, ..., n, be defined such that

[Niz;] = dijz). (38)
Then setting

¥i =2z (39)

we obtain a realization of (37). Now using these new generators we can get realizations of
the quantum algebras of respective classical algebras as follows.
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U, A,

F; = 2iz; 1[Nisal

E; = Zi+1Zi_1[Ni]

K = qNHl*Ni (40)
U,C,

F; = 2i2; 4 [Nija]

E; = zi11z; '[Ni]

Ki=q®Ma=M 1. a1

F, = 23

N,
E,=—z7°
%]
K, = —[2N, +1]. (41)

We note that, unlike the undeformed cad®,(n) and D,(n) have realization only in
Fermionic generators [12]. Therefore, although we can obtain realizatia®), @nd D,

in our generators it is not possible to extend this directly to the deformed case, the reason
being that in the latter case the coproduct is not cocommutative.

5. Operator realizations

In this section we construct some infinite-dimensional representations. First, we have a
realization of the algebrad in terms of differential operators. See [13] for a similar
construction forU,sl(2). Let B = Clz;,z;7%i = 1,...,n] be the algebra of Laurent
polynominals inz, treated here as a formal power series. etdenote the derivation
z(9/9z;) and setD;, =0if i =0 orn+ 1. Let

hi = Di_1—2D; + D; 1 (42)
and
Vi = Zi- (43)
Then h;y;] = —aj;y;. Therefore, using (2) we obtain the realization (putting: 0):
Diy1—D;i _ ,Di—Dij1
E = Zflq f{l
q9—4q
Di—Di-1 __ ,Di-1—D;
F =z 1 q_]_ (44)
q—4q
In terms of the shift operators - f(z1,...,2i,.--) = f(Z1, -+ qZi>» Zitds ---)
-1 -1
E — Z—l Ti+1Ti - TiTi+1
D=z
’ q—q7t
T,T Y — 17T,
F=gmt LT (45)
q—4q

One could also write the above in terms of partiaderivatives but (45) is more useful. Let

us briefly consider a possible method of constructing an infinite-dimensional representation.
Let A be an Abelian algebra with generatdes} and suppose that has no zero divisors.

Let B C Der(A) be an Abelian subalgebra of Ddi), the algebra of derivations oA.
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Let S be the subalgebra of generated by simultaneous eigenvectors3ofThen, setting

hi =Y jd", d” e B, and choosingy, € S we get a set of linear equations such that
[7iy;] = —aj;y. Then using (2) one obtains a realizatorihf/(n +1). Note that we could
slightly generalize this by putting = k£ + D, k constant, and choosing appropriately.

One could then calculate-point functions for the modules [13].

Finally, let us consider an unusual representation corresponding to Whittaker modules

[1,14]. Thus, letX ={f(z1,...,z,):f is meromorphic in each variaBleThe domains of
definitions of f € X will be left unspecified. Let = (z1, ..., z,)

hif(z) =2z ()
vi- f@=fz,...,zica—Lzi+2,zi41—1, ..., z0).

Then,h; andy; satisfy the basic commutation relations. Note thats no longer diagonal.
In terms of operators

E; = qXes1) _ o= (Xeyy-1)
_expdi—1 — 20; + 9i+1)
q-q7* '
Still another similar non-standard realization@fsi(n + 1) is given by defining
hif(z) =z f(2)
fl, . ovzica—Lzi+2,zia+ 1, .., 2,)
yif(z) = :
@Zica =Dz +2(ziqa — 1)
Therefore,

(46)

E groiz—l _ g=2ez-1
" @at DG -G+ —g7Y
Similarly for F;.
We can interpret these realizations as follows. Let us start with a representation of
in coordinate space:

hk = —Lak (48)
Vi = expu(zi—1 — 22k + Zk+1)- (49)

The momentum space representations of these operators via Fourier transforms and their
complex cojugates are precisely the representations given above.

exp(—0d;—1 + 20; — 9;41). (47)

6. Conclusion

Some concluding remarks are in order. It is to be observed that the algebr&—A is
isomorphic to a subalgebra of the enveloping field of a Heisenberg algebra [15]. However,
note that we have to find a representationdouch that they;’s are invertible to yield

a representation of/(n + 1) and U,sl(n + 1). The representations are on the space of
polynomials. We have already noted the relative merits and limitations of this realization.
Using this one can get all the results that are computable using the Cartan—Weyl generators
or the g-boson realization. Moreover, as discussed at the end of section 3 in the more
complicated cases the present method demands relatively easier computations. In section 4
we have obtained some results on the fusion structurds,it(3) modules. This could

be a starting point for more complete results with possible applications to quantum field
theories with non-semisimple gauge symmetry [16]. Note also that the realization (2) yields
a realization ofU,A(cc) provided we replace the in those formulae by any constant
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(# — 1). However, we can pass over to the affine algebtas)" case. It is also possible
to construct vertex operator realizations starting from the present realization.
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